Detection of Electrical Tree in Epoxy Resin under Non-uniform DC Electric Field Measured by Current Integrated Charge Method

2020 ◽  
Vol 140 (9) ◽  
pp. 432-438
Author(s):  
Masayuki Fujii ◽  
Koki Matsushita ◽  
Masumi Fukuma ◽  
Shinichi Mitsumoto
AIP Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 075011 ◽  
Author(s):  
Wenxia Sima ◽  
Hang Xu ◽  
Potao Sun ◽  
Qianqiu Shao ◽  
Ze Yin

2014 ◽  
Vol 931-932 ◽  
pp. 962-967 ◽  
Author(s):  
Sackthavy Chandavong ◽  
Kittipong Tonmitra ◽  
Arkom Kaewrawang

This paper presents the flashover between the electrodes conducted the current by the water drop on insulating surfaces. It causes ageing to the insulator and leads to deterioration when the insulator is used for over years. In the experiments, epoxy resin with the water drop is tested by using direct current until flashover of 70 kV. Besides that, the effect of the water volume, the number of the water drop and the water types - tap and aqua water on flashover are investigated. The flashover of tap water grows faster when increases the volume of water drop. The flashover of aqua water does not depend on the volume of water drop. The deformation and elongate of water drop is in the direction of electric field line. The results lead to protect the damage of insulator caused by the humidity and the loss of their efficiency insulators.


2009 ◽  
Vol 129 (12) ◽  
pp. 915-921 ◽  
Author(s):  
Hideki Ueno ◽  
Takashi Nagamachi ◽  
Masaki Nakamura ◽  
Hiroshi Nakayama ◽  
Kunihiko Kakihana

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 69522-69531
Author(s):  
Yongqiang Wang ◽  
Changhui Feng ◽  
Yu Luo

1990 ◽  
Vol 68 (8) ◽  
pp. 3865-3871 ◽  
Author(s):  
Jian‐chun Cheng ◽  
Shu‐yi Zhang ◽  
Yue‐sheng Lu

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2562
Author(s):  
Abdullahi Abubakar Mas’ud ◽  
Arunachalam Sundaram ◽  
Jorge Alfredo Ardila-Rey ◽  
Roger Schurch ◽  
Firdaus Muhammad-Sukki ◽  
...  

In high-voltage (HV) insulation, electrical trees are an important degradation phenomenon strongly linked to partial discharge (PD) activity. Their initiation and development have attracted the attention of the research community and better understanding and characterization of the phenomenon are needed. They are very damaging and develop through the insulation material forming a discharge conduction path. Therefore, it is important to adequately measure and characterize tree growth before it can lead to complete failure of the system. In this paper, the Gaussian mixture model (GMM) has been applied to cluster and classify the different growth stages of electrical trees in epoxy resin insulation. First, tree growth experiments were conducted, and PD data captured from the initial to breakdown stage of the tree growth in epoxy resin insulation. Second, the GMM was applied to categorize the different electrical tree stages into clusters. The results show that PD dynamics vary with different stress voltages and tree growth stages. The electrical tree patterns with shorter breakdown times had identical clusters throughout the degradation stages. The breakdown time can be a key factor in determining the degradation levels of PD patterns emanating from trees in epoxy resin. This is important in order to determine the severity of electrical treeing degradation, and, therefore, to perform efficient asset management. The novelty of the work presented in this paper is that for the first time the GMM has been applied for electrical tree growth classification and the optimal values for the hyperparameters, i.e., the number of clusters and the appropriate covariance structure, have been determined for the different electrical tree clusters.


Sign in / Sign up

Export Citation Format

Share Document