Development of a 3D Viewpoint Recognition System Using a Neural Network for Autonomous Flying Drones

2016 ◽  
Vol 136 (10) ◽  
pp. 719-726
Author(s):  
Junya Arakaki ◽  
Hitoshi Ishikawa ◽  
Itaru Nagayama
2020 ◽  
Author(s):  
Ganesh Awasthi ◽  
Dr. Hanumant Fadewar ◽  
Almas Siddiqui ◽  
Bharatratna P. Gaikwad

2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 30-34
Author(s):  
Somalin Sandha ◽  
Debaraj Rana

In present day scenario the security and authentication is very much needed to make a safety world. Beside all security one vital issue is recognition of number plate from the car for Authorization. In the busy world everything cannot be monitor by a human, so automatic license plate recognition is one of the best application for authorization without involvement of human power. In the proposed method we have make the problem into three fold, firstly extraction of number plate region, secondly segmentation of character and finally Authorization through recognition and classification. For number plate extraction and segmentation we have used morphological based approaches where as for classification we have used Neural Network as classifier. The proposed method is working well in varieties of scenario and the performance level is quiet good.


2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Muchun Su ◽  
Diana Wahyu Hayati ◽  
Shaowu Tseng ◽  
Jiehhaur Chen ◽  
Hsihsien Wei

Health care for independently living elders is more important than ever. Automatic recognition of their Activities of Daily Living (ADL) is the first step to solving the health care issues faced by seniors in an efficient way. The paper describes a Deep Neural Network (DNN)-based recognition system aimed at facilitating smart care, which combines ADL recognition, image/video processing, movement calculation, and DNN. An algorithm is developed for processing skeletal data, filtering noise, and pattern recognition for identification of the 10 most common ADL including standing, bending, squatting, sitting, eating, hand holding, hand raising, sitting plus drinking, standing plus drinking, and falling. The evaluation results show that this DNN-based system is suitable method for dealing with ADL recognition with an accuracy rate of over 95%. The findings support the feasibility of this system that is efficient enough for both practical and academic applications.


Author(s):  
Lin Han ◽  
Lu Han

With the rapid development of China’s market economy, brand image is becoming more and more important for an enterprise to enhance its market competitiveness and occupy a favorable market share. However, the brand image of many established companies gradually loses with the development of society and the improvement of people’s aesthetic pursuit. This has forced it to change its corporate brand image and regain the favor of the market. Based on this, this article combines the related knowledge and concepts of fuzzy theory, from the perspective of visual identity design, explores the development of corporate brand image visual identity intelligent system, and aims to design a set of visual identity system that is different from competitors in order to shape the enterprise. Distinctive brand image and improve its market competitiveness. This article first collected a large amount of information through the literature investigation method, and made a systematic and comprehensive introduction to fuzzy theory, visual recognition technology and related theoretical concepts of brand image, which laid a sufficient theoretical foundation for the later discussion of the application of fuzzy theory in the design of brand image visual recognition intelligent system; then the fuzzy theory algorithm is described in detail, a fuzzy neural network is proposed and applied to the design of the brand image visual recognition intelligent system, and the design experiment of the intelligent recognition system is carried out; finally, through the use of the specific case of KFC brand logo, the designed intelligent recognition system was tested, and it was found that the visual recognition intelligent system had an overall accuracy rate of 96.08% for the KFC brand logo. Among them, the accuracy rate of color recognition was the highest, 96.62%; comparing the changes in the output value of the training sample and the test sample, the output convergence effect of the color network is the best; through the comparison test of the BP neural network, the recognition effect of the fuzzy neural network is better.


Author(s):  
Muhammad Muaaz ◽  
Ali Chelli ◽  
Martin Wulf Gerdes ◽  
Matthias Pätzold

AbstractA human activity recognition (HAR) system acts as the backbone of many human-centric applications, such as active assisted living and in-home monitoring for elderly and physically impaired people. Although existing Wi-Fi-based human activity recognition methods report good results, their performance is affected by the changes in the ambient environment. In this work, we present Wi-Sense—a human activity recognition system that uses a convolutional neural network (CNN) to recognize human activities based on the environment-independent fingerprints extracted from the Wi-Fi channel state information (CSI). First, Wi-Sense captures the CSI by using a standard Wi-Fi network interface card. Wi-Sense applies the CSI ratio method to reduce the noise and the impact of the phase offset. In addition, it applies the principal component analysis to remove redundant information. This step not only reduces the data dimension but also removes the environmental impact. Thereafter, we compute the processed data spectrogram which reveals environment-independent time-variant micro-Doppler fingerprints of the performed activity. We use these spectrogram images to train a CNN. We evaluate our approach by using a human activity data set collected from nine volunteers in an indoor environment. Our results show that Wi-Sense can recognize these activities with an overall accuracy of 97.78%. To stress on the applicability of the proposed Wi-Sense system, we provide an overview of the standards involved in the health information systems and systematically describe how Wi-Sense HAR system can be integrated into the eHealth infrastructure.


Sign in / Sign up

Export Citation Format

Share Document