scholarly journals Smart Care Using a DNN-Based Approach for Activities of Daily Living (ADL) Recognition

2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Muchun Su ◽  
Diana Wahyu Hayati ◽  
Shaowu Tseng ◽  
Jiehhaur Chen ◽  
Hsihsien Wei

Health care for independently living elders is more important than ever. Automatic recognition of their Activities of Daily Living (ADL) is the first step to solving the health care issues faced by seniors in an efficient way. The paper describes a Deep Neural Network (DNN)-based recognition system aimed at facilitating smart care, which combines ADL recognition, image/video processing, movement calculation, and DNN. An algorithm is developed for processing skeletal data, filtering noise, and pattern recognition for identification of the 10 most common ADL including standing, bending, squatting, sitting, eating, hand holding, hand raising, sitting plus drinking, standing plus drinking, and falling. The evaluation results show that this DNN-based system is suitable method for dealing with ADL recognition with an accuracy rate of over 95%. The findings support the feasibility of this system that is efficient enough for both practical and academic applications.

Author(s):  
Michael D. Paskett ◽  
Mark R. Brinton ◽  
Taylor C. Hansen ◽  
Jacob A. George ◽  
Tyler S. Davis ◽  
...  

Abstract Background Advanced prostheses can restore function and improve quality of life for individuals with amputations. Unfortunately, most commercial control strategies do not fully utilize the rich control information from residual nerves and musculature. Continuous decoders can provide more intuitive prosthesis control using multi-channel neural or electromyographic recordings. Three components influence continuous decoder performance: the data used to train the algorithm, the algorithm, and smoothing filters on the algorithm’s output. Individual groups often focus on a single decoder, so very few studies compare different decoders using otherwise similar experimental conditions. Methods We completed a two-phase, head-to-head comparison of 12 continuous decoders using activities of daily living. In phase one, we compared two training types and a smoothing filter with three algorithms (modified Kalman filter, multi-layer perceptron, and convolutional neural network) in a clothespin relocation task. We compared training types that included only individual digit and wrist movements vs. combination movements (e.g., simultaneous grasp and wrist flexion). We also compared raw vs. nonlinearly smoothed algorithm outputs. In phase two, we compared the three algorithms in fragile egg, zipping, pouring, and folding tasks using the combination training and smoothing found beneficial in phase one. In both phases, we collected objective, performance-based (e.g., success rate), and subjective, user-focused (e.g., preference) measures. Results Phase one showed that combination training improved prosthesis control accuracy and speed, and that the nonlinear smoothing improved accuracy but generally reduced speed. Phase one importantly showed simultaneous movements were used in the task, and that the modified Kalman filter and multi-layer perceptron predicted more simultaneous movements than the convolutional neural network. In phase two, user-focused metrics favored the convolutional neural network and modified Kalman filter, whereas performance-based metrics were generally similar among all algorithms. Conclusions These results confirm that state-of-the-art algorithms, whether linear or nonlinear in nature, functionally benefit from training on more complex data and from output smoothing. These studies will be used to select a decoder for a long-term take-home trial with implanted neuromyoelectric devices. Overall, clinical considerations may favor the mKF as it is similar in performance, faster to train, and computationally less expensive than neural networks.


2021 ◽  
Vol 102 ◽  
pp. 04009
Author(s):  
Naoto Ageishi ◽  
Fukuchi Tomohide ◽  
Abderazek Ben Abdallah

Hand gestures are a kind of nonverbal communication in which visible bodily actions are used to communicate important messages. Recently, hand gesture recognition has received significant attention from the research community for various applications, including advanced driver assistance systems, prosthetic, and robotic control. Therefore, accurate and fast classification of hand gesture is required. In this research, we created a deep neural network as the first step to develop a real-time camera-only hand gesture recognition system without electroencephalogram (EEG) signals. We present the system software architecture in a fair amount of details. The proposed system was able to recognize hand signs with an accuracy of 97.31%.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2019 ◽  
Vol 32 (9) ◽  
pp. 987-997 ◽  
Author(s):  
Prachi P. Chavan ◽  
Satish K. Kedia ◽  
Xinhua Yu

Objective: This study examines effects of physical and functional limitations on health care utilization among older cancer survivors, compared with those without cancer and without physical and functional limitations. Method: Medicare Current Beneficiary Survey data from 2008 to 2011 were used. Physical limitations (PL), activities of daily living (ADL), and instrumental activities of daily living (IADL) were measured on a 5-point scale. Propensity score weighting was developed using logistic regressions. Results: Older cancer survivors with physical and functional limitations had higher rate of emergency department visits than those without limitations (PL: 21.8% vs.17%, adjusted odds ratio [aOR]:1.72, 95% confidence interval [CI]: [1.26, 2.35], p < .05; ADL: 25.8% vs.17.4%, aOR: 2.68, 95% CI: [1.86, 3.86], p < .001), and higher cost of hospitalization (IADL: M = US$24,916, SD: 3,877.1). Conclusion: Older cancer survivors with physical and functional limitations had higher health care utilization compared with those without cancer. Addressing complex and unique health care needs in this population will help reduce excess burden on the health care system.


2005 ◽  
Vol 5 (1) ◽  
pp. 48-52
Author(s):  
Hideki Nomura ◽  
Hatsuyo Hayashi ◽  
Toshio Hayashi ◽  
Hidetoshi Endo ◽  
Hisayuki Miura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document