FRT Capability of Single-phase Grid-tied Inverter with Minimized Interconnected Inductor Applying High-speed Switching to Freewheel Mode

2020 ◽  
Vol 140 (1) ◽  
pp. 1-14
Author(s):  
Satoshi Nagai ◽  
Keisuke Kusaka ◽  
Jun-ichi Itoh
2013 ◽  
Vol 133 (12) ◽  
pp. 1186-1192
Author(s):  
Toshihiko Noguchi ◽  
Tomohiro Mizuno ◽  
Munehiro Murata

1970 ◽  
Vol 41 (6) ◽  
pp. 2745-2747 ◽  
Author(s):  
R. I. Gayley ◽  
J. D. Langan ◽  
K. Kim

Author(s):  
L-E. Nilsson ◽  
Z. Yu ◽  
O. Tarasenko ◽  
H. Knape ◽  
P-Y. Fonjallaz ◽  
...  

2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary


2001 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
Z. Segal

Abstract Experimental investigation of a heat sink for electronics cooling is performed. The objective is to keep the operating temperature at a relatively low level of about 323–333K, while reducing the undesired temperature variation in both the streamwise and transverse directions. The experimental study is based on systematic temperature, flow and pressure measurements, infrared radiometry and high-speed digital video imaging. The heat sink has parallel triangular microchannels with a base of 250μm. According to the objectives of the present study, Vertrel XF is chosen as the working fluid. Experiments on flow boiling of Vertrel XF in the microchannel heat sink are performed to study the effect of mass velocity and vapor quality on the heat transfer, as well as to compare the two-phase results to a single-phase water flow.


Sign in / Sign up

Export Citation Format

Share Document