Improving the Efficiency of High-Speed AC Contact Suspension

2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 253
Author(s):  
Si Wu ◽  
Mingli Wu ◽  
Yi Wang

The existing problems of the traction power-supply system (i.e., the existence of the neutral section and the power quality problems) limit the development of railways, especially high-speed railways, which are developing rapidly worldwide. The existence of the neutral section leads to the speed loss and traction loss as well as mechanical failures, all of which threaten the fast and safe operation of the train and the system. Meanwhile, the power quality problems (e.g., the negative sequence current, the reactive power, and the harmonic) can bring a series of problems that cannot be ignored on the three-phase grid side. In response, many researchers have proposed co-phase power-supply schemes to solve these two problems simultaneously. Given that the auto-transformer (AT) power-supply mode has become the main power-supply mode for the high-speed railway traction power-supply system, it has a bright future following the rapid development of the high-speed railway. In addition, there is no co-phase power-supply scheme designed for AT power-supply mode in the existing schemes. Therefore, the main contribution of this paper is to propose a specifically designed power-supply mode more suitable for the AT, as well as to establish the control systems for the rectifier side and the inverter side. In addition, for the proposed scheme, the operation principle is analyzed, the mathematical model is built, and the control system is created, and its functionality is verified by simulation, and its advantages are compared and summarized finally. The result proves that it can meet functional requirements. At the same time, compared with the existing co-phase power-supply scheme, it saves an auto-transformer in terms of topology, reduces the current stress by 10.9% in terms of the current stress of the switching device, and reduces the power loss by 0.25% in terms of the entire system power loss, which will result in a larger amount of electricity being saved. All of this makes it a more suitable co-phase power-supply scheme for the AT power-supply mode.


2013 ◽  
Vol 21 (4) ◽  
pp. 258-265 ◽  
Author(s):  
Yubao Zhao ◽  
Shougen Chen ◽  
Xinrong Tan ◽  
Ma Hui

2021 ◽  
Vol 65 (192) ◽  
pp. 195-202
Author(s):  
Andrzej Zbieć

In the series of articles describing the aerodynamic phenomena caused by the passage of a train, the effects of a train running at high speed on itself, on other trains, on objects on the track and on people are characterized. This impact can be of two types – generated pressure and slipstream. Apart from the literature analysis, the author’s research is also taken into account. The second part presents the effect of pressure changes on the front and side surfaces of passing trains. Conclusions concerning side windows and windscreens in high-speed railway vehicles and older type railway vehicles with lower allowable speeds and the possibility of using various rolling stock on the same lines are presented. Keywords: rolling stock, high-speed railways, aerodynamic phenomena


Sign in / Sign up

Export Citation Format

Share Document