scholarly journals Isolation of endothelial progenitor cells from human adipose tissue

2016 ◽  
Vol 3 (05) ◽  
pp. 645-652 ◽  
Author(s):  
Phuc Van Pham ◽  
Ngoc Bich Vu ◽  
Hoa Trong Nguyen ◽  
Ngoc Kim Phan

Adipose tissue is a rich source of stem cells, especially mesenchymal stem cells (MSCs). This study aimed to identify and isolate endothelial progenitor cells (EPCs) from human adipose tissue. Belly adipose tissues were collected from donors with consent. Stromal vascular fractions (SVFs) were extracted from adipose tissues by enzyme collagenase using commercial kits. SVFs were cultured in MSCCult medium for 24 h to obtain MSCs, then supernatant was collected and cell pellet cultured in EGM-2 medium to obtain adipose tissue EPCs (ADEPCs). ADEPCs were checked for surface marker expression of CD31 and VEGFR2, and for angiogenesis capability in vitro. The results showed that SVFs contained a pool of EPCs with strong angiogenesis potential and that adipose tissue is not only a source for MSCs but also for EPCs. Therefore, ADEPCs may a useful source of EPCs for vascular medicine.

2021 ◽  
Vol 22 (22) ◽  
pp. 12283
Author(s):  
Jaromír Vašíček ◽  
Andrej Baláži ◽  
Mária Tirpáková ◽  
Andrea Svoradová ◽  
Ľubomír Ondruška ◽  
...  

Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) have been studied several years for their immunomodulatory effect through the paracrine mechanism and cytokine secretion. In combination with endothelial progenitor cells (EPCs), MSCs have great therapeutical potential for the repair of endothelium and wound healing. However, little is known about the cytokine profile of rabbit AT-MSCs or even EPCs. The aim of this study was to analyze the secretomes of these rabbit stem/progenitor cells. A large-scale human cytokine array (up to 80 cytokines) was used to identify and compare cytokines secreted into conditioned media of human and rabbit AT-MSCs as well as HUVECs and rabbit EPCs. Few cytokines were highly expressed by human AT-MSCs (TIMP-2, TIMP-1), HUVECs (MCP-1, TIMP-2, GRO, Angiogenin, IL-8, TIMP-1), or by rabbit EPCs (TIMP-2). Several cytokines have moderate expression by human (MCP-1, GRO, Angiogenin, TGF-β 2, IL-8, LIF, IL-6, Osteopontin, Osteoprotegerin) and rabbit AT-MSCs (TIMP-2, TGF-β 2, LIF, Osteopontin, IL-8, IL-5, IL-3) or by HUVECs (IL-6, MIF, TGF-β 2, GCP-2, IGFBP-2, Osteoprotegerin, EGF, LIF, PDGF-BB, MCP-3, Osteopontin, Leptin, IL-5, ENA-78, TNF- β) and rabbit EPCs (TGF-β 2, Osteopontin, GRO, LIF, IL-8, IL-5, IL-3). In conclusion, the proposed method seems to be useful for the secretome analysis of rabbit stem/progenitor cells.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 1230-P
Author(s):  
CRISTINA CACCIOPPOLI ◽  
SEBASTIO PERRINI ◽  
VALENTINA ANNAMARIA GENCHI ◽  
ROSSELLA DORIA ◽  
GIUSEPPE PALMA ◽  
...  

2013 ◽  
Vol 22 (4) ◽  
pp. 643-653 ◽  
Author(s):  
Alexandrina Burlacu ◽  
Gabriela Grigorescu ◽  
Ana-Maria Rosca ◽  
Mihai Bogdan Preda ◽  
Maya Simionescu

2017 ◽  
Vol 4 (3-4) ◽  
pp. 217-227
Author(s):  
Van Hong Tran ◽  
Hoa Trong Nguyen ◽  
Phuc Van Pham

Introduction: Endothelial cells (ECs) or endothelial progenitor cells (EPCs) are essential cells for blood vascular regeneration and vascular tissue engineering. However, the source of EPCs are limited. Indeed, these cells only existence with low rate at some tissues such as bone marrow, umbilical cord blood and peripheral blood. This study aimed to produce EPCs from direct reprogramming of adipose tissue-derived mesenchymal stem cells (ADSCs) by ETV2 transfection in vitro. Methods: ADSCs were isolated according to the published works. They were confirmed as mesenchymal stem cells (MSCs) with some characteristics included expression of CD44, CD73, CD90, negative of CD14, CD45, and HLA-DR; in vitro differentiation into adipocytes, and osteoblasts. ETV-2 mRNA was in vitro produced by commercial kit. ETV-2 mRNA molecules were transfected into ADSCs by Fugenes and Lipofectamine agents. These transfected cells were evaluated the expression of EPC properties included expression of CD31, VEGFR-2 in the cell surface by flow cytometry, immunocytochemistry, and in vitro vessel formation in the Matrigel. Results: The results showed that ETV-2 could transform the ADSCs from mesenchymal cell phenotype into endothelial cell phenotype with 10% transfected ADSCs expressing the CD31 in their surface, they also could form the vessel structure in vitro. Conclusion: Although the low efficacy of direct reprogramming, this study gave the new strategy to produce EPCs from the favorite cell sources as ADSCs.


Sign in / Sign up

Export Citation Format

Share Document