Nitric Oxide Synthase Is Deficient in the Aganglionic Colon of Patients With Hirschsprung's Disease

PEDIATRICS ◽  
1994 ◽  
Vol 93 (4) ◽  
pp. 647-651
Author(s):  
John F. Bealer ◽  
Eileen S. Natuzzi ◽  
Cori Buscher ◽  
Alan W. Flake ◽  
N. Scott Adzick ◽  
...  

Objectives. The cause of Hirschsprung's disease is unknown but defects in nonadrenergic, noncholinergic innervation could prevent relaxation of aganglionic colon in patients with this disease. Nonadrenergic, noncholinergic nerves induce relaxation by using nitric oxide synthase to produce the smooth muscle relaxant nitric oxide (NO). In this study we asked whether aganglionic colon in patients with Hirschsprung's disease is deficient in NO synthase-containing nerves. Methodology. Using the tetrazolium blue dye method of demonstrating nicotinamide adenine dinucleotide phosphate-diaphorase enzymes, we examined eight colon specimens (four aganglionic and four ganglionic) from patients with Hirschsprung's disease for the presence of NO synthase. We further quantified NO synthase enzyme activity in these eight specimens by using the [3H]arginine-to-[3H]citrulline conversion assay. Results. The nicotinamide adenine dinucleotide phosphate-diaphorase staining showed that aganglionic colon contained less NO synthase than ganglionic colon. This NO synthase deficiency was located primarily in the nerves of the circular muscle layer of the colon. In addition, there was a striking difference in the NO synthase enzyme activity between aganglionic and ganglionic colon as measured by the [3H]arginine-to-[3H]citrulline conversion assay. Total NO synthase activity, as measured by this assay, was found to be less in aganglionic than in ganglionic colon. When the total activity was divided into its four known isoforms, aganglionic colon was noted to be striking deficient in the isoform derived primarily from nerves. Conclusion. We conclude that aganglionic colon is deficient in NO synthase-containing nerves. This deficiency could prevent smooth muscle relaxation in the aganglionic colon of patients with Hirschsprung's disease.

1993 ◽  
Vol 265 (5) ◽  
pp. C1379-C1387 ◽  
Author(s):  
J. S. Pollock ◽  
M. Nakane ◽  
L. D. Buttery ◽  
A. Martinez ◽  
D. Springall ◽  
...  

We have produced specific monoclonal antibodies (MAb) against particulate bovine aortic endothelial nitric oxide synthase. In Western blots, native and cultured bovine aortic endothelial cells as well as cultured bovine microvascular endothelial cells possess immunoreactive NO synthase. In dot blots, MAb H210 and H32 detect 1 ng and 100 pg of purified endothelial NO synthase, respectively. Both antibodies are specific to the endothelial NO synthase and do not cross-react with other known isoforms of NO synthase, namely from the brain, from cytokine/endotoxin-induced macrophages, or from cytokine/endotoxin-induced vascular smooth muscle cells. Immunohistochemical studies demonstrated the specificity of endothelial NO synthase for endothelial cells in various bovine and human tissues. Many types of endothelial cells, macrovascular, microvascular, arterial, and venous were found to possess this specific isoform of NO synthase. Electron microscopy showed the enzyme to be associated with the plasma membrane, membranes of cytoplasmic vesicles, and in the cytoplasm in human umbilical vein endothelial cells. The results demonstrate that particulate endothelial NO synthase is present in a site to act rapidly to produce NO for release into the blood or toward the smooth muscle in many vascular beds.


2003 ◽  
Vol 31 (02) ◽  
pp. 305-313 ◽  
Author(s):  
Mi-Hyeon Jang ◽  
Min-Chul Shin ◽  
Baek-Vin Lim ◽  
Hyun-Bae Kim ◽  
Young-Pyo Kim ◽  
...  

In the present study, the effect of acupuncture at Zusanli acupoint on nitric oxide synthase (NOS) expression in the hippocampus of streptozotocin (STZ)-induced diabetic rats was investigated via nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. Animals were divided into four groups: the control group, the nondiabetic and acupunctured group, the STZ-induced diabetes group, and the STZ-induced diabetes and acupunctured group. From the results, NADPH-d-positive neurons in the hippocampus were decreased in STZ-induced diabetic rats, while acupuncture increased NOS expression significantly under diabetic conditions. In the present study, it can be suggested that acupuncture treatment may modulate NOS activity in the hippocampus under diabetic conditions.


Sign in / Sign up

Export Citation Format

Share Document