scholarly journals Effect of abiotic factors on sulfidogenic activity of bacteria Desulfuromonas sp.

2020 ◽  
Vol 11 (2) ◽  
pp. 170-174
Author(s):  
O. M. Сhaіka ◽  
T. B. Peretyatko

Sulfur-reducing bacteria are promising agents for the development of new methods of wastewater treatment with the removal of ions of heavy metals and organic compounds. Study of the effect of various environmental factors on the growth and sulfidogenic activity of sulfur-reducing bacteria allows one to investigate the adaptability of these microorganisms to stress factors. The paper deals with the effect of рН, different concentrations of elemental sulfur, hydrogen sulfide and presence of various electron acceptors on the growth and sulfidogenic activity of bacteria Desulfuromonas sp. YSDS-3. The calculation of C/S ratio for sulfur-reducing bacteria Desulfuromonas sp. YSDS-3 was made, with the comparison with similar parameters of sulfate-reducing bacteria. In the medium with elemental sulfur, concentration of hydrogen sulfide increased with the concentration of elemental sulfur. Bacteria Desulfuromonas sp. YSDS-3 accumulated their biomass in the most effective way at the concentration of elemental sulfur of 10–100 mM. In the medium with polysulfide form of sulfur at the neutral pH, bacteria produced hydrogen sulfide and accumulated biomass the best. Hydrogen sulfide at the concentration of 3 mM did not inhibit the bacterial growth, but further increase in the hydrogen sulfide concentration inhibited the growth of bacteria. The bacteria did not grow at the hydrogen sulfide concentration of 25 mM and above. As the concentration of elemental sulfur and cell density increases, sulfidogenic activity of the bacteria grows. Presence of two electron acceptors (S and K2Cr2O7, S and MnO2, S and Fe (III)) did not affect the accumulation of biomass of the bacteria Desulfuromonas sp. YSDS-3. However, under such conditions the bacteria accumulated 1.5–2.5 times less hydrogen sulfide than in the test medium. After 12–24 h of cultivation, different concentrations of elemental sulfur had a significant effect on the sulfidogenic activity. However, during 3–16 days of cultivation, the percentage of effect of elemental sulfur concentration decreased to 31%, while the percentage of effect of cell density increased threefold. Presence in the medium of the electron acceptors (Cr (VI), MnO2, Fe (III)) alternative to elemental sulfur led to a significant decrease in the content of hydrogen sulfide produced by sulfur-reducing bacteria.

CORROSION ◽  
1956 ◽  
Vol 12 (1) ◽  
pp. 22-32 ◽  
Author(s):  
E. B. BACKENSTO ◽  
R. D. DREW ◽  
C. C. STAPLEFORD

Abstract High temperature hydrogen sulfide corrosion of carbon steel and low chrome alloys has become a serious problem in the petroleum industry in connection with the increasing use of high pressure hydrogenation and dehydrogenation processes for upgrading petroleum fractions. The effect of temperature, pressure and hydrogen sulfide concentration on the corrosion rate of a wide range of commonly used carbon steels and alloys has been determined in laboratory tests. It has been established that the low chrome alloys (up to 5 percent chromium) which have been used to combat sulfur corrosion in fractionation and cracking equipment, show little or no advanage over carbon steel in resisting attack by hydrogen sulfide. Of the conventional alloy steels tested, only the 18-8 chrome nickel and higher alloys have shown good resistance to this type of corrosion over a wide range of pressure, temperature and hydrogen sulfide concentration. It was found that aluminum coated steels also showed very good corrosion resistance. Three methods were proposed for minimizing hydrogen sulfide corrosion: (1) Reduction of hydrogen sulfide in process streams, (2) Use of chrome-nickel alloys, and (3) Protection of metals by aluminum coating.


1979 ◽  
Vol 57 (22) ◽  
pp. 2991-2995 ◽  
Author(s):  
François-Xavier Garneau ◽  
Ireneusz Szczerek

The near ultraviolet photolysis (λ > 280 nm) of liquid cis-2-butene in the presence of hydrogen sulfide was shown to result in isomerization and addition reactions. The former was monitored by the formation of trans-2-butene as a function of time and hydrogen sulfide concentration. The latter was observed by the presence of s-butyl mercaptan and di-s-butyl sulfide as products. The total amount of addition products as well as the relative amounts of mercaptan and sulfide were determined as a function of time. Using the foregoing information the extent of the isomerization reaction was shown to be greater than that of the addition reaction during the course of the irradiation at a concentration ratio of H2S/cis-2-butene equal to 0.15.It was also shown that hydrogen sulfide was a more effective sensitizer than s-butyl mercaptan and di-s-butyl sulfide but less effective than di-s-butyl disulfide in the isomerization of liquid cis-2-butene. The extent of isomerization and addition reactions were shown to be greater starting with cis-2-butene than with trans-2-butene in the presence of hydrogen sulfide.


Sign in / Sign up

Export Citation Format

Share Document