Myths and Facts of Forecasting Horizontal Well Production in Unconventional Reservoirs – Are We Complicating a Simple Analysis?

Author(s):  
Vivek Muralidharan ◽  
Krunal Joshi
Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2348 ◽  
Author(s):  
Syed Haider ◽  
Wardana Saputra ◽  
Tadeusz Patzek

We assemble a multiscale physical model of gas production in a mudrock (shale). We then tested our model on 45 horizontal gas wells in the Barnett with 12–15 years on production. When properly used, our model may enable shale companies to gain operational insights into how to complete a particular well in a particular shale. Macrofractures, microfractures, and nanopores form a multiscale system that controls gas flow in mudrocks. Near a horizontal well, hydraulic fracturing creates fractures at many scales and increases permeability of the source rock. We model the physical properties of the fracture network embedded in the Stimulated Reservoir Volume (SRV) with a fractal of dimension D < 2 . This fracture network interacts with the poorly connected nanopores in the organic matrix that are the source of almost all produced gas. In the practically impermeable mudrock, the known volumes of fracturing water and proppant must create an equal volume of fractures at all scales. Therefore, the surface area and the number of macrofractures created after hydrofracturing are constrained by the volume of injected water and proppant. The coupling between the fracture network and the organic matrix controls gas production from a horizontal well. The fracture permeability, k f , and the microscale source term, s, affect this coupling, thus controlling the reservoir pressure decline and mass transfer from the nanopore network to the fractures. Particular values of k f and s are determined by numerically fitting well production data with an optimization algorithm. The relationship between k f and s is somewhat hyperbolic and defines the type of fracture system created after hydrofracturing. The extremes of this relationship create two end-members of the fracture systems. A small value of the ratio k f / s causes faster production decline because of the high microscale source term, s. The effective fracture permeability is lower, but gas flow through the matrix to fractures is efficient, thus nullifying the negative effect of the smaller k f . For the high values of k f / s , production decline is slower. In summary, the fracture network permeability at the macroscale and the microscale source term control production rate of shale wells. The best quality wells have good, but not too good, macroscale connectivity.


2015 ◽  
Vol 733 ◽  
pp. 3-8
Author(s):  
Peng Chen ◽  
Xin Hai Wang ◽  
Shan Jiang ◽  
Guo Liang Li ◽  
Hong Liu

By using the potential theory and the superposition principle, Productivity model of multi-fracturing horizontal well is established under the condition of infinite conductivity fractures. It solves the problem by using numerical methods and analyzes the influence of fracture numbers, fracture length and fracture spacing on well production by using actual reservoir parameters. Finally, it analyzes the production decline characteristics of multi-fracturing horizontal well based on the change of production curve. In the early period of production, the well production increases with the increase of fracture numbers, fracture length and fracture spacing. In the late period, the fracture parameters have less effect on well production. Early-stage production of multi-fracturing horizontal well obeys to the modified-hyperbolic decline model, while the relationship between ratio of Q, Qi and time is exponential model in the late-stage. It has some significance for design of horizontal well fracturing parameters and production forecasts in unconventional reservoirs.


Sign in / Sign up

Export Citation Format

Share Document