scholarly journals Resistance of native honey bees from Rhodope Mountains and lowland regions of Bulgaria to Nosema ceranae and viral pathogens

2020 ◽  
Vol 23 (2) ◽  
pp. 206-217
Author(s):  
R. Shumkova ◽  
B. Neov ◽  
A. Georgieva ◽  
D. Teofanova ◽  
G. Radoslavov ◽  
...  

The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of fundamental economic, agricultural and environmental importance. The aim of this study was to compare the prevalence of some parasitic and viral pathogens in local honey bees from the Rodope Mountains and plain regions. To achieve this goal, molecular screening for two of the most distributed Nosema spp. and molecular identification of six honey bee viruses – Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Chronic bee paralysis virus (CBPV), Sacbrood virus (SBV), Kashmir bee virus (KBV), and Black queen cell virus (BQCV) was performed. Molecular analysis was carried out on 168 honey bee samples from apiaries situated in three different parts of the country where a mix of different honey bee subspecies were reared. In South Bulgaria (the Rhodope Mountains), a local honey bee called Apis mellifera rodopica (a local ecotype of A. m. macedonica) was bred, while in the other two regions (plains) different introduced subspecies existed. The results showed that the samples from the lowland regions in the country were outlined with the highest prevalence (70.5%) of N. ceranae, while those from the mountainous parts had the lowest rate (5.2%). Four of the honey bee viruses were identified – DWV (10/5.9%), followed by SBV (6/3.6%) and ABPV (2/1.2%), and one case of BQCV. In conclusion, the local honey bee A. m. rodopica (despite the higher number of samples) has shown lower prevalence of both nosemosis and viral infections. Therefore, this honey bee has to be preserved as a part of the national biodiversity.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5077 ◽  
Author(s):  
Rositsa Shumkova ◽  
Boyko Neov ◽  
Daniela Sirakova ◽  
Ani Georgieva ◽  
Dimitar Gadjev ◽  
...  

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study was to investigate incidence of six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a reverse transcription polymerase chain reaction (RT-PCR). A total of 250 adult honey bee samples were obtained from 50 colonies from eight apiaries situated in three different parts of the country (South, North and West Bulgaria). The results showed the highest prevalence of DWV followed by SBV and ABPV, and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe. In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.


2018 ◽  
Author(s):  
Rositsa Shumkova ◽  
Boyko Neov ◽  
Daniela Sirakova ◽  
Ani Georgieva ◽  
Denitsa Teofanova ◽  
...  

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study is to detect six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a Reverse transcription polymerase chain reaction (RT-PCR). A total of 50 adult honey bee samples were obtained from apiaries situated in three different parts of the country (South, North and West Bulgaria).The results showed the highest prevalence of DWV (10/20 %), followed by SBV (6/12 %) and ABPV (2/4%), and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe.In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.


2018 ◽  
Author(s):  
Rositsa Shumkova ◽  
Boyko Neov ◽  
Daniela Sirakova ◽  
Ani Georgieva ◽  
Denitsa Teofanova ◽  
...  

Honey bee colonies suffer from various pathogens, including honey bee viruses. About 24 viruses have been reported so far. However, six of them are considered to cause severe infection which inflicts heavy losses on beekeeping. The aim of this study is to detect six honey bee viruses: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV) by a Reverse transcription polymerase chain reaction (RT-PCR). A total of 50 adult honey bee samples were obtained from apiaries situated in three different parts of the country (South, North and West Bulgaria).The results showed the highest prevalence of DWV (10/20 %), followed by SBV (6/12 %) and ABPV (2/4%), and one case of BQCV. A comparison with homology sequences available in GenBank was performed by phylogenetic analysis, and phylogenetic relationships were discussed in the context of newly described genotypes in the uninvestigated South Eastern region of Europe.In conclusion, the present study has been the first to provide sequencing data and phylogenetics analyses of some honey bee viruses in Bulgaria.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 372
Author(s):  
Antonio Nanetti ◽  
James D. Ellis ◽  
Ilaria Cardaio ◽  
Giovanni Cilia

Knowledge regarding the honey bee pathogens borne by invasive bee pests remains scarce. This investigation aimed to assess the presence in Aethina tumida (small hive beetle, SHB) adults of honey bee pathogens belonging to the following groups: (i) bacteria (Paenibacillus larvae and Melissococcus plutonius), (ii) trypanosomatids (Lotmaria passim and Crithidia mellificae), and (iii) viruses (black queen cell virus, Kashmir bee virus, deformed wing virus, slow paralysis virus, sacbrood virus, Israeli acute paralysis virus, acute bee paralysis virus, chronic bee paralysis virus). Specimens were collected from free-flying colonies in Gainesville (Florida, U.S.A.) in summer 2017. The results of the molecular analysis show the presence of L. passim, C. mellificae, and replicative forms of deformed wing virus (DWV) and Kashmir bee virus (KBV). Replicative forms of KBV have not previously been reported. These results support the hypothesis of pathogen spillover between managed honey bees and the SHB, and these dynamics require further investigation.


2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Giuseppina Tantillo ◽  
Marilisa Bottaro ◽  
Angela Di Pinto ◽  
Vito Martella ◽  
Pietro Di Pinto ◽  
...  

The health and vigour of honeybee colonies are threatened by numerous parasites (such as <em>Varroa destructor</em> and <em>Nosema</em> spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and wellbeing of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research.


2021 ◽  
Author(s):  
Amy C Geffre ◽  
Dillon Travis ◽  
Joshua Kohn ◽  
James Nieh

Bees provide critical pollination services but are threatened by multiple stressors, including viral pathogens. Most studies of pollinator health focus on managed honey bees (Apis mellifera Linnaeus) (MHB) or native bee species, but a third player, the feral honey bee (FHB), requires further study. Spillover and spillback of viral pathogens between these managed, feral, and native bees is generating increasing interest. In this case study, we provide evidence suggesting that FHB colonies play an important role in viral pathogen dynamics of southern California pollinator communities because they act as reservoirs, of viral pathogens such as acute bee paralysis virus (ABPV), black queen cell virus (BQCV), and deformed wing virus (DWV). Surprisingly, even though FHB are not treated for diseases or parasites, they harbor similar pathogen loads to MHB, which are usually highly treated, suggesting the need for future studies to determine if FHB resist or are more resilient to viruses.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Patcharin Phokasem ◽  
Lilia I. de Guzman ◽  
Kitiphong Khongphinitbunjong ◽  
Amanda M. Frake ◽  
Panuwan Chantawannakul

Abstract Tropilaelaps mercedesae parasitism can cause Apis mellifera colony mortality in Asia. Here, we report for the first time that tropilaelaps mites feed on both pre- and post-capped stages of honey bees. Feeding on pre-capped brood may extend their survival outside capped brood cells, especially in areas where brood production is year-round. In this study, we examined the types of injury inflicted by tropilaelaps mites on different stages of honey bees, the survival of adult honey bees, and level of honey bee viruses in 4th instar larvae and prepupae. The injuries inflicted on different developing honey bee stages were visualised by staining with trypan blue. Among pre-capped stages, 4th instar larvae sustained the highest number of wounds (4.6 ± 0.5/larva) while 2nd-3rd larval instars had at least two wounds. Consequently, wounds were evident on uninfested capped brood (5th-6th instar larvae = 3.91 ± 0.64 wounds; prepupae = 5.25 ± 0.73 wounds). Tropilaelaps mite infestations resulted in 3.4- and 6-fold increases in the number of wounds in 5th-6th instar larvae and prepupae as compared to uninfested capped brood, respectively. When wound-inflicted prepupae metamorphosed to white-eyed pupae, all wound scars disappeared with the exuviae. This healing of wounds contributed to the reduction of the number of wounds (≤10) observed on the different pupal stages. Transmission of mite-borne virus such as Deformed Wing Virus (DWV) was also enhanced by mites feeding on early larval stages. DWV and Black Queen Cell Virus (BQCV) were detected in all 4th instar larvae and prepupae analysed. However, viral levels were more pronounced in scarred 4th instar larvae and infested prepupae. The remarkably high numbers of wounds and viral load on scarred or infested developing honey bees may have caused significant weight loss and extensive injuries observed on the abdomen, wings, legs, proboscis and antennae of adult honey bees. Together, the survival of infested honey bees was significantly compromised. This study demonstrates the ability of tropilaelaps mites to inflict profound damage on A. mellifera hosts. Effective management approaches need to be developed to mitigate tropilaelaps mite problems.


2015 ◽  
Vol 59 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Antoine Clermont ◽  
Matias Pasquali ◽  
Michael Eickermann ◽  
François Kraus ◽  
Lucien Hoffmann ◽  
...  

Abstract Twenty managed honey bee colonies, split between 5 apiaries with 4 hives each, were monitored between the summer of 2011 and spring of 2013. Living bees were sampled in July 2011, July 2012, and August 2012. Twenty-five, medium-aged bees, free of varroa mites, were pooled per colony and date, to form one sample. Unlike in France and Belgium, Chronic Bee Paralysis Virus (CBPV) has not been found in Luxembourg. Slow Bee Paralysis Virus (SBPV) and Israeli Acute Paralysis Virus (IAPV) levels were below detection limits. Traces of Kashmir Bee Virus (KBV) were amplified. Black Queen Cell Virus (BQCV), Varroa destructor Virus-1 (VDV-1), and SacBrood Virus (SBV) were detected in all samples and are reported from Luxembourg for the first time. Varroa destructor Macula- Like Virus (VdMLV), Deformed Wing Virus (DWV), and Acute Bee Paralysis Virus (ABPV) were detected at all locations, and in most but not all samples. There was a significant increase in VDV-1 and DWV levels within the observation period. A principal component analysis was unable to separate the bees of colonies that survived the following winter from bees that died, based on their virus contents in summer. The number of dead varroa mites found below colonies was elevated in colonies that died in the following winter. Significant positive relationships were found between the log-transformed virus levels of the bees and the log-transformed number of mites found below the colonies per week, for VDV-1 and DWV. Sacbrood virus levels were independent of varroa levels, suggesting a neutral or competitive relationship between this virus and varroa.


Sign in / Sign up

Export Citation Format

Share Document