fredholm map
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

2020 ◽  
Vol 13 (1) ◽  
pp. 33-47
Author(s):  
Samuel Iyase ◽  
Abiodun Opanuga

This paper investigates the solvability of a class of higher order nonlocal boundaryvalue problems of the formu(n)(t) = g(t, u(t), u0(t)· · · u(n−1)(t)), a.e. t ∈ (0, ∞)subject to the boundary conditionsu(n−1)(0) = (n − 1)!ξn−1u(ξ), u(i)(0) = 0, i = 1, 2, . . . , n − 2,u(n−1)(∞) = Z ξ0u(n−1)(s)dA(s)where ξ > 0, g : [0, ∞) × <n −→ < is a Caratheodory’s function,A : [0, ξ] −→ [0, 1) is a non-decreasing function with A(0) = 0, A(ξ) = 1. The differential operatoris a Fredholm map of index zero and non-invertible. We shall employ coicidence degree argumentsand construct suitable operators to establish existence of solutions for the above higher ordernonlocal boundary value problems at resonance.


2020 ◽  
Vol 13 (1) ◽  
pp. 33-47
Author(s):  
Samuel Iyase ◽  
Abiodun Opanuga

This paper investigates the solvability of a class of higher order nonlocal boundaryvalue problems of the formu(n)(t) = g(t, u(t), u0(t)· · · u(n−1)(t)), a.e. t ∈ (0, ∞)subject to the boundary conditionsu(n−1)(0) = (n − 1)!ξn−1u(ξ), u(i)(0) = 0, i = 1, 2, . . . , n − 2,u(n−1)(∞) = Z ξ0u(n−1)(s)dA(s)where ξ > 0, g : [0, ∞) × <n −→ < is a Caratheodory’s function,A : [0, ξ] −→ [0, 1) is a non-decreasing function with A(0) = 0, A(ξ) = 1. The differential operatoris a Fredholm map of index zero and non-invertible. We shall employ coicidence degree argumentsand construct suitable operators to establish existence of solutions for the above higher ordernonlocal boundary value problems at resonance.


2019 ◽  
Vol 116 (18) ◽  
pp. 8787-8797 ◽  
Author(s):  
Benjamin Filippenko ◽  
Zhengyi Zhou ◽  
Katrin Wehrheim

We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus—a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs—the local models for scale-Fredholm maps—vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.


2015 ◽  
Vol 15 (3) ◽  
Author(s):  
Joanna Janczewska ◽  
Anita Zgorzelska

AbstractWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Kármán equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations is based on bifurcation theory. We will find critical values of the compressive load parameter by reducing von Kármán equations to an operator equation in Hölder spaces with a nonlinear Fredholm map of index zero. We will prove a sufficient condition for bifurcation by the use of a gradient version of the Crandall-Rabinowitz theorem due to A.Yu. Borisovich and basic notions of representation theory. Moreover, applying the key function method by Yu.I. Sapronov we will investigate the shape of bifurcation branches.


2009 ◽  
Vol 20 (05) ◽  
pp. 573-604 ◽  
Author(s):  
GANG TIAN ◽  
SHUGUANG WANG

We investigate the Seiberg–Witten theory in the presence of real structures. Certain conditions are obtained so that integer-valued real Seiberg–Witten invariants can be defined. In general, we study properties of the real Seiberg–Witten projection map from the point of view of Fredholm map degrees.


1993 ◽  
Vol 4 (2) ◽  
pp. 189-204 ◽  
Author(s):  
A. McNabb

Linear Fredholm operators (J, k) of the form u(x, t) = (J, k) v (x, t) ≡ J(t) v (x, t)+ k(t, s) v (x, s)ds can be found which map solutions v of the linear matrix system of n partial differential equations ∂u/∂t = DLv + Bv, into solutions u of the like system ∂u/∂t = DLu + Au, when the diagonal matrix D with positive elements and the matrices A and B commute with the linear, scalar operator L. For solution sets in appropriate function spaces, this mapping (J, k) is unique, independent of L, and 1–1 onto if it preserves initial values so that u(x, 0) = v(x, 0). When the set of solutions is restricted to those with zero initial values, this uniqueness aspect of (j, k) breaks down, and there are many linear maps of this Fredholm form which preserve the zero initial conditions and map all such solutions of the first equation in the appropriate function space into solutions of the second. When L is an unbounded operator like the Laplacian ∇2, the initial value problems have many solutions depending on the values of u and u on the boundaries of the region of the solutions, as well as their values in the region at time t = 0. Danckwerts introduced the concept of a ‘constant preserving’ map of Volterra form mapping solutions of the scalar diffusion equation ∂u/∂t = D∇2u, which are initially zero, onto solutions of a scalar diffusion equation ∂u/∂t = D∇2u + Au, with a linear, homogeneous, constant coefficient source term. This concept of a ‘constant preserving’ map extends to the nth order matrix Fredholm maps described. A map (J, k∗) is said to be constant preserving if for all constant n x n matrices C, (J, k∗)C = C, and hence J(t) + k∗(t, s)ds = I, where I is the unit matrix. In the restricted solution spaces where u(x, 0) and v(x, 0) are zero, there is a unique 1–1 onto Danckwerts map of this type transforming solutions of the v equation into solutions of the u equation. In the cases where the coupling matrix A is constant and B is zero, the kernel k∗ of the Danckwerts map can be expressed in terms of the kernel k for the more general Fredholm map associated with the same equations, but mapping the larger solution sets containing elements which need not vanish at time zero. The Danckwerts mapping is used to establish a generalized Ussing flux-ratio theorem for some coupled diffusion problems involving several chemically interacting components.


Sign in / Sign up

Export Citation Format

Share Document