Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.)

Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Celso L. Marino ◽  
Neal A. Tuleen ◽  
Gary E. Hart ◽  
James C. Nelson ◽  
Mark E. Sorrells ◽  
...  

Restriction fragment length polymorphism (RFLP) maps of chromosomes 6A, 6B, and 6D of hexaploid wheat (Triticum aestivum L. em. Thell.) have been produced. They were constructed using a population of F7–8 recombinant inbred lines derived from a synthetic wheat × bread wheat cross. The maps consist of 74 markers assigned to map positions at a LOD ≥ 3 (29 markers assigned to 6A, 24 to 6B, and 21 to 6D) and 2 markers assigned to 6D ordered at a LOD of 2.7. Another 78 markers were assigned to intervals on the maps. The maps of 6A, 6B, and 6D span 178, 132, and 206 cM, respectively. Twenty-one clones detected orthologous loci in two homoeologues and 3 detected an orthologous locus in each chromosome. Orthologous loci are located at intervals of from 1.5 to 26 cM throughout 70% of the length of the linkage maps. Within this portion of the maps, colinearity (homosequentiality) among the three homoeologues is strongly indicated. The remainder of the linkage maps consists of three segments ranging in length from 47 to 60 cM. Colinearity among these chromosomes and other Triticeae homoeologous group 6 chromosomes is indicated and a consensus RFLP map derived from maps of the homoeologous group 6 chromosomes of hexaploid wheat, tetraploid wheat, Triticum tauschii, and barley is presented. Key words : RFLP, wheat, linkage maps, molecular markers.

Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 729-734 ◽  
Author(s):  
R C Leach ◽  
I S Dundas ◽  
A Houben

The physical length of the rye segment of a 4BS.4BL–5RL translocation derived from the Cornell Wheat Selection 82a1-2-4-7 in a Triticum aestivum 'Chinese Spring' background was measured using genomic in situ hybridization (GISH) and found to be 16% of the long arm. The size of this translocation was similar to previously published GISH measurements of another 4BS.4BL–5RL translocation in a Triticum aestivum 'Viking' wheat background. Molecular maps of both 4BS.4BL–5RL translocations for 2 different wheat backgrounds were developed using RFLP analysis. The locations of the translocation breakpoints of the 2 4BS.4BL–5RL translocations were similar even though they arose in different populations. This suggests a unique property of the region at or near the translocation breakpoint that could be associated with their similarity and spontaneous formation. These segments of rye chromosome 5 also contain a gene for copper efficiency that improves the wheat's ability to cope with low-copper soils. Genetic markers in these maps can also be used to screen for copper efficiency in bread wheat lines derived from the Cornell Wheat Selection 82a1 2-4-7.Key words: Triticum aestivum, wheat–rye translocation, homoeologous group 4, homoeologous group 5, GISH, comparative map, copper efficiency, hairy peduncle.


Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 854-856
Author(s):  
D. R. Knott

The inheritance of stem rust (Puccinia graminis f. sp. tritici Eriks. and Henn.) resistance was studied in 'K253', a hexaploid wheat (Triticum aestivum L.) with resistance derived from a tetraploid wheat (T. turgidum L.). The studies indicated that 'K253' carries one dominant gene for good resistance to races 29 and 56 (probably Sr9e) and one recessive gene for moderate resistance to race 15B-1. In addition, some plants apparently carry a recessive gene for moderate resistance to race 56. Four different types of hexaploid near-isogenic lines were produced. One carried Sr9e and another the gene for moderate resistance to race 15B-1. Two carried genes that had not been identified in the genetic studies, including one that was apparently not derived from K253.Key words: stem rust resistance, Puccinia graminis tritici, wheat, Triticum aestivum, Triticum turgidum.


1983 ◽  
Vol 61 (12) ◽  
pp. 3393-3398 ◽  
Author(s):  
M. J. Asíns ◽  
C. Benito ◽  
M. Pérez de la Vega

A comparative study on the electrophoretic peroxidase patterns of rye (Secale cereale L.), tetraploid wheat (Triticum turgidum L. durum), hexaploid wheat (Triticum aestivum L.), and hexaploid Triticale during kernel germination has been carried out. Endosperm, embryo, coleoptile, and the first leaf have been analyzed. A drastic change in peroxidase patterns was observed during the first hours of germination in all the materials studied. The triticale peroxidase patterns were similar to tetraploid wheat female parent patterns. The chromosomal locations of two leaf peroxidase isozymes of hexaploid wheat 'Chinese Spring' are also reported. These two isozymes, C9 and C10, are associated with chromosome arms 3DS and 7DS, respectively.


2021 ◽  
Author(s):  
Mei Zheng ◽  
Jingchen Lin ◽  
Xingbei Liu ◽  
Wei Chu ◽  
Jinpeng Li ◽  
...  

Abstract Polyploidy occurs prevalently and plays an important role during plant speciation and evolution. This phenomenon suggests polyploidy could develop novel features that enable them to adapt wider range of environmental conditions compared with diploid progenitors. Bread wheat (Triticum aestivum L., BBAADD) is a typical allohexaploid species and generally exhibits greater salt tolerance than its tetraploid wheat progenitor (BBAA). However, little is known about the underlying molecular basis and the regulatory pathway of this trait. Here, we show that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity-induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing and CRISPR-mediated knockout of TaHAG1 validated the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contributed to salt tolerance by modulating ROS production and signal specificity. Moreover, TaHAG1 directly targeted a subset of genes that are responsible for hydrogen peroxide production, and enrichment of TaHAG1 triggered increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity-induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how an epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.


1986 ◽  
Vol 28 (2) ◽  
pp. 294-297 ◽  
Author(s):  
E. D. P. Whelan ◽  
R. L. Conner ◽  
J. B. Thomas ◽  
A. D. Kuzyk

A translocation between a common wheat (Triticum aestivum L.) chromosome and chromosome 6 of Elytrigia pontica (Podp.) Holub conferred resistance to feeding by Eriophyes (= Aceria) tulipae Keifer, the mite vector of wheat streak mosaic virus and the wheat spot mosaic agent. Resistance was dominant, but differential transmission occurred between the pollen and the egg. Transmission of resistance through the pollen was low, about 3% in 'Cadet', 'Rescue', and 'Winalta', but significantly higher in 'Norstar' (9.1%). Significant differences also were detected in transmission through the egg. 'Cadet' had the highest transmission (50.9%) and 'Rescue' the lowest (40.5%). However, there were no significant differences among varieties in the frequencies of resistance (50.3–54.5%) in the F2. Less than 10% of the F2 plants were homozygous resistant. Selfed progeny from monosomic or disomic F1 plants from crosses between the homozygous translocation and group-6 monosomics all segregated for susceptibility. Meiotic studies of 25 susceptible F2 plants from these F1 monosomics showed that 21 were either monosomic or disomic and only 4 were nullisomic, indicating that the translocation did not involve any of the group-6 homoeologues. The translocation is considered to be a noncompensating translocation involving a whole arm of chromosome 6 of E. pontica.Key words: wheat, mite (wheat curl), translocation, Triticum.


Sign in / Sign up

Export Citation Format

Share Document