Modelling of latent thermal energy storage systems

2017 ◽  
Vol 8 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Z. Andrássy ◽  
Z. Szánthó

In this paper phase change materials are presented, as effective thermal energy storage due to their great latent heat storing possibility. The main substance used for thermal energy storage purposes is water. Storing the energy with water is not that effective as with phase change materials, because the temperature of water has to change, and it worsen the heat exchange intensity. On the other hand, with phase change materials the temperature of the material does not have to change due to the latent heat storage possibilities. A buffer tank with two pipe coils filled with phase change materials is investigated with the aim to reduce the storage volume. An own thermodynamic model, a CFD simulation and an experimental system are presented. The models could be validated and the process of phase change could be examined with a life-size thermal energy storage system in the laboratory of the department. The performance of heat absorption and release of the phase change material could be calculated in the function of inlet water temperature and mass flow.

2012 ◽  
Vol 433-440 ◽  
pp. 1027-1032 ◽  
Author(s):  
B. Kanimozhi ◽  
B.R. Ramesh Bapu

This paper summary the investigation and analysis of thermal energy storage extracted from solar heater and use for domestic purpose. Choosing a suitable phase change materials paraffin wax used for storing thermal energy in insulation tank. The tank carries minimum of 45 liters capacity of water and 50 numbers copper tubes each copper tube carries minimum of 100 grams PCM materials. Inside the tank phase change materials are receiving hot water from solar panel. This solar energy is stored in Copper tubes each copper tube contains PCM Materials as latent heat energy. Latent heat is absorbed and stored in Copper tubes .Large quantity of solar energy can be stored in a day time and same heat can be retrieved for later use. The tank was instrumented to measure inlet and outlet water temperature. The differences of temperature of the water is measured in a definite interval of time have been noted then calculating heat transfer rate and system effectiveness. The heat storage system is to be applied to store solar energy and the stored heat is used for domestic hot water supply system.


2018 ◽  
Author(s):  
Habeeb Ur Rahman Khan ◽  
Taha K. Aldoss ◽  
Muhammad M. Rahman

The objective of this work is to investigate the performance of a thermal energy storage system using multiple phase change materials (PCMs). This study is based on latent heat thermal energy storage. Three phase change materials namely, Potassium Hydroxide (KOH), Potassium Nitrate (KNO3), and Sodium Nitrate (NaNO3) have been selected for this study. These PCMs have been chosen because of their inherent thermal stability, high melting point, high latent heat of fusion per unit mass, relatively high thermal conductivity, high specific heat, non-flammable properties, and availability. In this work, the performance of the thermal energy storage system is analyzed by evaluating key parameters such as liquid fraction and the amount of energy stored and extracted during charging and discharging respectively. Two types of PCM layouts, uniform and cascaded, have been employed. In case of uniform PCM layout, only one type of PCM is used at a time throughout the bed. In case of cascaded PCM layout, multiple PCMs are used at a time throughout the bed. The cascaded layout further has two types of arrangement. The first type of arrangement is the slope down arrangement where the PCMs are placed in the descending order of their melting temperatures. The second type of arrangement is the slope up arrangement where the PCMs are placed in the ascending order of their melting temperatures. Overall, the cascaded layout excels in performance when compared to the uniform layout in terms of PCM melting and solidification time and in terms of energy stored and extracted. Keeping these factors in mind, we recommend using a cascaded layout in a Thermal Energy Storage System (TESS) as opposed to a uniform layout.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 96327-96333 ◽  
Author(s):  
Dong Fang ◽  
Xiaomin Cheng ◽  
Yuanyuan Li ◽  
Zheng Sun

Latent heat storage proves to be one of the most efficient ways of storing thermal energy.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Olakunle F Isamotu ◽  
Nicholas A Musa ◽  
Joshua B Aluko ◽  
Maclawrence A Oriaifo

Latent heat storage in salt mixture has drawn so much attention because of the salt mixture’s capability of storing   large quantity of heat when compared to single salt thereby, making it more feasible for use as phase change material.  However it is worthwhile to find out among various combination of salts forming eutectic   mixtures, the one that has the best energy storage capability by evaluating   and comparing their melting points and latent heat storage. So in this research work, four different types of eutectic mixture of   salts were prepared and experimentally   investigated for the best thermal energy storage capability.  The first eutectic mixture consists of 2.6g of LiNO3, 6.4g of NH4NO3   and 1g of NaNO3. The second eutectic mixture consists of1.75g of LiNO3,   3.9g of NH4NO3 and 1.1g of KNO3. The third one consists of 5.2g of   LiNO3, 13.7g   of NH4NO3 and 1g of NH4Cl) and the fourth one consists of 1.77g of LiNO3, 2.94g of NH4NO3,  1g of NaNO3 and 1g of NaCl. The latent heat and the melting point of the respective salt and their eutectic mixture were determined using digital differential scanning Apparatus.  The results obtained showed that the melting points and latent heats of  the first, second, third and fourth eutectic mixture  were 79.50C and 112kJ/kg,  80.50C and 114kJ/kg,  81.40C and 109kJ/kg,  84.40C and 119kJ/kg respectively.  In view of this, the eutectic mixture of 1.77g of LiNO3, 2.94g of NH4NO3, 1g of NaNO3 and 1g of NaCl with melting point of 84.40C and latent heat of 119KJ/Kg was found to possess the best thermal energy storage capability compared to others..Keywords—Eutectic mixture, Salts, Phase change materials (PCM), Latent heat storage


2021 ◽  
Vol 11 (19) ◽  
pp. 9305
Author(s):  
Mohamed Sawadogo ◽  
Marie Duquesne ◽  
Rafik Belarbi ◽  
Ameur El Amine Hamami ◽  
Alexandre Godin

Latent heat thermal energy storage systems incorporate phase change materials (PCMs) as storage materials. The high energy density of PCMs, their ability to store at nearly constant temperature, and the diversity of available materials make latent heat storage systems particularly competitive technologies for reducing energy consumption in buildings. This work reviews recent experimental and numerical studies on the integration of PCMs in building envelopes for passive energy storage. The results of the different studies show that the use of PCMs can reduce the peak temperature and smooth the thermal load. The integration of PCMs can be done on the entire building envelope (walls, roofs, windows). Despite many advances, some aspects remain to be studied, notably the long-term stability of buildings incorporating PCMs, the issues of moisture and mass transfer, and the consideration of the actual use of the building. Based on this review, we have identified possible contributions to improve the efficiency of passive systems incorporating PCMs. Thus, fatty acids and their eutectic mixtures, combined with natural insulators, such as vegetable fibers, were chosen to make shape-stabilized PCMs composites. These composites can be integrated in buildings as a passive thermal energy storage material.


2015 ◽  
Vol 766-767 ◽  
pp. 474-479
Author(s):  
B. Kanimozhi ◽  
Amit Arnav ◽  
Eluri Vamsi Krishna ◽  
R. Thamarai Kannan

Phase Change Materials (PCM) plays an important role in energy conservation, which is very attractive because of its high storage density with small temperature change. In this paper an attempt made to review number of paper based on Phase Change Materials (PCM) in various field of thermal energy storage systems and its applications. The Phase Change Material is the latent heat storage material. As the source temperature raises the chemical bonds within the PCM breaks and the material changes its phase from one phase to another phase. The material begins to melt when the phase change temperature is reached. The temperature then stays constant until the melting process is finished. Thermal Energy Storage deals with the storing of energy by cooling, heating, melting, solidifying or vaporizing a material, the energy becoming available as heat when the process is reversed. Hence it is important to study about phase change materials in thermal energy storage system.Keywords: Phase change materials, Thermal energy storage system, Encapsulation, solar system, Heating and cooling of building


2016 ◽  
Vol 4 (43) ◽  
pp. 16906-16912 ◽  
Author(s):  
Michael Graham ◽  
Elena Shchukina ◽  
Paula Felix De Castro ◽  
Dmitry Shchukin

Nanocapsules containing salt hydrate for latent heat storage were proven to be thermally and chemically stable over 100 cycles.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3821
Author(s):  
Kassianne Tofani ◽  
Saeed Tiari

Latent heat thermal energy storage systems (LHTES) are useful for solar energy storage and many other applications, but there is an issue with phase change materials (PCMs) having low thermal conductivity. This can be enhanced with fins, metal foam, heat pipes, multiple PCMs, and nanoparticles (NPs). This paper reviews nano-enhanced PCM (NePCM) alone and with additional enhancements. Low, middle, and high temperature PCM are classified, and the achievements and limitations of works are assessed. The review is categorized based upon enhancements: solely NPs, NPs and fins, NPs and heat pipes, NPs with highly conductive porous materials, NPs and multiple PCMs, and nano-encapsulated PCMs. Both experimental and numerical methods are considered, focusing on how well NPs enhanced the system. Generally, NPs have been proven to enhance PCM, with some types more effective than others. Middle and high temperatures are lacking compared to low temperature, as well as combined enhancement studies. Al2O3, copper, and carbon are some of the most studied NP materials, and paraffin PCM is the most common by far. Some studies found NPs to be insignificant in comparison to other enhancements, but many others found them to be beneficial. This article also suggests future work for NePCM and LHTES systems.


Sign in / Sign up

Export Citation Format

Share Document