Relationship between developmental synaptic modulation and conditioning-induced synaptic change inLymnaea

2008 ◽  
Vol 59 (Supplement 2) ◽  
pp. 97-100 ◽  
Author(s):  
T. Karasawa ◽  
Nao Sato ◽  
T. Horikoshi ◽  
M. Sakakibara
1999 ◽  
Vol 81 (2) ◽  
pp. 781-787 ◽  
Author(s):  
Shao-Nian Yang ◽  
Yun-Gui Tang ◽  
Robert S. Zucker

Selective Induction of LTP and LTD by Postsynaptic [Ca2+]i Elevation. Long-term potentiation (LTP) and long-term depression (LTD), two prominent forms of synaptic plasticity at glutamatergic afferents to CA1 hippocampal pyramidal cells, are both triggered by the elevation of postsynaptic intracellular calcium concentration ([Ca2+]i). To understand how one signaling molecule can be responsible for triggering two opposing forms of synaptic modulation, different postsynaptic [Ca2+]i elevation patterns were generated by a new caged calcium compound nitrophenyl-ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid in CA1 pyramidal cells. We found that specific patterns of [Ca2+]i elevation selectively activate LTP or LTD. In particular, only LTP was triggered by a brief increase of [Ca2+]i with relatively high magnitude, which mimics the [Ca2+]i rise during electrical stimulation typically used to induce LTP. In contrast, a prolonged modest rise of [Ca2+]i reliably induced LTD. An important implication of the results is that both the amplitude and the duration of an intracellular chemical signal can carry significant biological information.


1999 ◽  
Vol 82 (5) ◽  
pp. 2579-2589 ◽  
Author(s):  
Tatsumi Nagahama ◽  
Kenji Narusuye ◽  
Hidekazu Arai

Japanese species, Aplysia kurodai, feeds well on Ulva but rejects Gelidium ( Geli.) or Pachydictyon ( Pach.) with different rhythmic patterned movements of the jaws and radula. During ingestion the jaws open at the radula-protraction phase and remain half open at the initial phase of the radula-retraction, whereas during rejection the jaws open similarly but start to close immediately after the onset of the radula-retraction. These can be induced not only by the natural seaweed but by the extract solutions. We previously showed that the change of the patterned jaw movements from the ingestion to the rejection may result from the decrease in the delay of the firing onset of the jaw-closing (JC) motor neurons during their depolarization. This diminished delay produces a phase advance relative to the radula-retraction phase. In that study, we showed that during ingestion the buccal multiaction (MA) neurons may generate the delay of firing onset of the JC motor neurons by producing monosynaptic inhibitory postsynaptic potentials (IPSPs) during the initial portion of their depolarization. In the present experiments, the firing patterns in the MA neurons induced by application of the Geli. or Pach. extract to the lips were explored in the semi-intact preparations. During the Pach. response the duration and the firing frequency of the MA firing at each depolarizing phase were decreased in comparison with the Ulvaresponse. No decreases in the MA firing were observed during the Geli. response, suggesting that the similar patterned jaw movements during rejection of Geli. and Pach. may be generated by different neural mechanisms. Moreover, the size of the MA-induced IPSP in the JC motor neurons was largely decreased by application of the Geli. or Pach. extract to the lips in the reduced preparations consisting of the tentacle-lips and the cerebral-buccal ganglia. Voltage-clamp experiments on the JC motor neurons showed that the size of synaptic current induced by the MA spikes was decreased by application of these solutions to the lips. The decrease was induced when the buccal ganglia were bathed in a solution to block polysynaptic pathways. These results suggest that the advance of the onset of the JC firing at each depolarizing phase during the Geli. or Pach. response may be mainly or partly caused by the decrease in the size of the MA-induced IPSP in the motor neurons. Modulatory action of cerebral neurons or peripheral afferent neurons in the lip region may contribute to this synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document