cerebral neurons
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 18)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
pp. 1-4
Author(s):  
Harry S. Goldsmith

Normally, an adequate cerebral blood flow arrives at individual cerebral neurons in which the blood flow augments activity of intraneuronal mitochondria, which is the source of intraneuronal ATP, the energy source of cerebral neurons. With a decrease in cerebral blood flow that can occur as a function of normal aging phenomena, less blood results in decreased mitochondria, decreased ATP, and a decrease in neuronal activity, which can eventually lead to Alzheimer’s disease. It has been found that placement of the omentum directly on an Alzheimer’s disease brain can lead to improved cognitive function.


2021 ◽  
Vol 22 (19) ◽  
pp. 10783
Author(s):  
Emanuele Tonti ◽  
Mauro Budini ◽  
Enzo Maria Vingolo

Brain plasticity is the capacity of cerebral neurons to change, structurally and functionally, in response to experiences. This is an essential property underlying the maturation of sensory functions, learning and memory processes, and brain repair in response to the occurrence of diseases and trauma. In this field, the visual system emerges as a paradigmatic research model, both for basic research studies and for translational investigations. The auditory system remains capable of reorganizing itself in response to different auditory stimulations or sensory organ modification. Acoustic biofeedback training can be an effective way to train patients with the central scotoma, who have poor fixation stability and poor visual acuity, in order to bring fixation on an eccentrical and healthy area of the retina: a pseudofovea. This review article is focused on the cellular and molecular mechanisms underlying retinal sensitivity changes and visual and auditory system plasticity.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mohamed A. Kandeil ◽  
Eman T. Mohammed ◽  
Rania A. Radi ◽  
Fatma Khalil ◽  
Abdel-Razik H. Abdel-Razik ◽  
...  

Nicotine is the major alkaloid present in cigarettes that induces various biochemical and behavioral changes. Nanonaringenin (NNG) and vitamin E are antioxidants that are reported to mitigate serious impairments caused by some toxins and oxidants. Thus, we aimed to investigate the efficacy of NNG, vitamin E, and their combinations to ameliorate behavioral, biochemical, and histological alterations induced by nicotine in rats. Adult male albino rats were randomly grouped into six equal groups (10 rats/group): control, N (nicotine 1 mg/kg b.w./day S/C from 15th to 45th day, 5 days a week), NNG (25 mg/kg b.w./day orally for 45 days), N + NNG, N + E (nicotine + vitamin E 200 mg/kg b.w./day orally), and N + NNG + E (nicotine + NNG + vitamin E at the aforementioned doses). Behavioral tests were conducted on day 15 and 30 postnicotine injection, while memory tests, brain neurotransmitters, antioxidants, and histopathological examination were examined at day 30 only. As a result, nicotine impaired rats’ activity (hypoactivity and hyperactivity) and memory, induced anxiolytic and anxiogenic effects on rats, and altered neurotransmitters (acetylcholinesterase, serotonin, and dopamine), and redox markers (MDA, H2O2, GSH, and catalase) levels in brain homogenates. Thickening and congestion of the meninges and degeneration of the cerebral neurons and glia cells were observed. Cosupplementation with NNG, vitamin E, and their combination with nicotine was beneficial in the alleviation of activity impairments and improved short memory and cognition defects and exploratory behaviors. Our results indicate the antioxidant potential of NNG and vitamin E by modulating redox markers and neurotransmitters in the brain. Thus, data suggest that the prophylactic use of NNG, vitamin E, and/or their combination for (45 days) may have a successful amelioration of the disrupted behavior and cognition and biochemical and histopathological alterations induced by nicotine.


Author(s):  
Alina Yuryevna Maslova ◽  
Kheda Lechaevna Bazaeva ◽  
Zaira Arazovna Abdullaeva ◽  
Shuainat Omarovna Khazamova ◽  
Karina Akhmedovna Zeusheva ◽  
...  

At present, research in the field of the brain does not cease to surprise us with new facts and discoveries that no one could have suspected about 30 years ago. But it was at the time when it became clear that the cerebral neurons are not the only cells that can respond to changes in the external environment. A real scientific boom began to study a heterogeneous group called glia. And scientists are paying close attention to the largest of them – astrocytes. Understanding the importance of astrocytes in the mechanisms of repair and damage to brain cells in various forms of CNS pathology determines the possibility of targeted search for drugs that affect the rate of development of reactive astrogliosis in response to various brain injuries. At the same time, pharmacological modulation of activated astrocytes and other components of glia can be an integral part of the therapy of neurological diseases.


Author(s):  
Элеонора Николаевна Трушина

В статье приводится краткий обзор литературы о механизмах развития апоптоза нейронов головного мозга при ишемии. Ингибирование путей апоптоза оказывает нейропротективный эффект и предотвращает расширение зоны поражения. The article provides a brief review of the literature on the mechanisms of the development of apoptosis of cerebral neurons during ischemia. Inhibition of the pathways of apoptosis has a neuroprotective effect and prevents the expansion of the affected area.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Isao Kosugi ◽  
Yoshifumi Arai ◽  
Satoshi Baba ◽  
Hideya Kawasaki ◽  
Toshihide Iwashita ◽  
...  

AbstractThe brain is the major target of congenital cytomegalovirus (CMV) infection. It is possible that neuron disorder in the developing brain is a critical factor in the development of neuropsychiatric diseases in later life. Previous studies using mouse model of murine CMV (MCMV) infection demonstrated that the viral early antigen (E1 as a product of e1 gene) persists in the postnatal neurons of the hippocampus (HP) and cerebral cortex (CX) after the disappearance of lytic infection from non-neuronal cells in the periventricular (PV) region. Furthermore, neuron-specific activation of the MCMV-e1-promoter (e1-pro) was found in the cerebrum of transgenic mice carrying the e1-pro-lacZ reporter construct. In this study, in order to elucidate the mechanisms of e1-pro activation in cerebral neurons during actual MCMV infection, we have generated the recombinant MCMV (rMCMV) carrying long e1-pro1373- or short e1-pro448-EGFP reporter constructs. The length of the former, 1373 nucleotides (nt), is similar to that of transgenic mice. rMCMVs and wild type MCMV did not significantly differed in terms of viral replication or E1 expression. rMCMV-infected mouse embryonic fibroblasts showed lytic infection and activation of both promoters, while virus-infected cerebral neurons in primary neuronal cultures demonstrated the non-lytic and persistent infection as well as the activation of e1-pro-1373, but not -448. In the rMCMV-infected postnatal cerebrum, lytic infection and the activation of both promoters were found in non-neuronal cells of the PV region until postnatal 8 days (P8), but these disappeared at P12, while the activation of e1-pro-1373, but not -448 appeared in HP and CX neurons at P8 and were prolonged exclusively in these neurons at P12, with preservation of the neuronal morphology. Therefore, e1-pro-448 is sufficient to activate E1 expression in non-neuronal cells, however, the upstream sequence from nt -449 to -1373 in e1-pro-1373 is supposed to work as an enhancer necessary for the neuron-specific activation of e1-pro, particularly around the second postnatal week. This unique activation of e1-pro in developing cerebral neurons may be an important factor in the neurodevelopmental disorders induced by congenital CMV infection.


2020 ◽  
Vol 27 (7) ◽  
pp. 1710-1716
Author(s):  
Mohammed S. Almuhayawi ◽  
Wafaa S. Ramadan ◽  
Steve Harakeh ◽  
Soad K. Al Jaouni ◽  
Dhruba J. Bharali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document