synaptic modulation
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 16)

H-INDEX

33
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Robert Paul Malchow ◽  
Boriana K. Tchernookova ◽  
Ji-in Vivien Choi ◽  
Peter J. S. Smith ◽  
Richard H. Kramer ◽  
...  

There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell—mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.


2021 ◽  
Vol 15 ◽  
Author(s):  
Timothy OIsen ◽  
Alberto Capurro ◽  
Maša Švent ◽  
Nadia Pilati ◽  
Charles Large ◽  
...  

Spontaneous subthreshold activity in the central nervous system is fundamental to information processing and transmission, as it amplifies and optimizes sub-threshold signals, thereby improving action potential initiation and maintaining reliable firing. This form of spontaneous activity, which is frequently considered noise, is particularly important at auditory synapses where acoustic information is encoded by rapid and temporally precise firing rates. In contrast, when present in excess, this form of noise becomes detrimental to acoustic information as it contributes to the generation and maintenance of auditory disorders such as tinnitus. The most prominent contribution to subthreshold noise is spontaneous synaptic transmission (synaptic noise). Although numerous studies have examined the role of synaptic noise on single cell excitability, little is known about its pre-synaptic modulation owing in part to the difficulties of combining noise modulation with monitoring synaptic release. Here we study synaptic noise in the auditory brainstem dorsal cochlear nucleus (DCN) of mice and show that pharmacological potentiation of Kv3 K+ currents reduces the level of synaptic bombardment onto DCN principal fusiform cells. Using a transgenic mouse line (SyG37) expressing SyGCaMP2-mCherry, a calcium sensor that targets pre-synaptic terminals, we show that positive Kv3 K+ current modulation decreases calcium influx in a fifth of pre-synaptic boutons. Furthermore, while maintaining rapid and precise spike timing, positive Kv3 K+ current modulation increases the synchronization of local circuit neurons by reducing spontaneous activity. In conclusion, our study identifies a unique pre-synaptic mechanism which reduces synaptic noise at auditory synapses and contributes to the coherent activation of neurons in a local auditory brainstem circuit. This form of modulation highlights a new therapeutic target, namely the pre-synaptic bouton, for ameliorating the effects of hearing disorders which are dependent on aberrant spontaneous activity within the central auditory system.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1375
Author(s):  
Miguel A. Gonzalez-Lozano ◽  
Joke Wortel ◽  
Rolinka J. van der Loo ◽  
Jan R. T. van Weering ◽  
August B. Smit ◽  
...  

The metabotropic glutamate receptor 5 (mGluR5) is an essential modulator of synaptic plasticity, learning and memory; whereas in pathological conditions, it is an acknowledged therapeutic target that has been implicated in multiple brain disorders. Despite robust pre-clinical data, mGluR5 antagonists failed in several clinical trials, highlighting the need for a better understanding of the mechanisms underlying mGluR5 function. In this study, we dissected the molecular synaptic modulation mediated by mGluR5 using genetic and pharmacological mouse models to chronically and acutely reduce mGluR5 activity. We found that next to dysregulation of synaptic proteins, the major regulation in protein expression in both models concerned specific processes in mitochondria, such as oxidative phosphorylation. Second, we observed morphological alterations in shape and area of specifically postsynaptic mitochondria in mGluR5 KO synapses using electron microscopy. Third, computational and biochemical assays suggested an increase of mitochondrial function in neurons, with increased level of NADP/H and oxidative damage in mGluR5 KO. Altogether, our observations provide diverse lines of evidence of the modulation of synaptic mitochondrial function by mGluR5. This connection suggests a role for mGluR5 as a mediator between synaptic activity and mitochondrial function, a finding which might be relevant for the improvement of the clinical potential of mGluR5.


2021 ◽  
Author(s):  
Austin C. Korgan ◽  
Wei Wei ◽  
Sophie L.A. Martin ◽  
Catherine C. Kaczorowski ◽  
Kristen M.S. O'Connell

Obesity is a progressive, relapsing disease with few therapies. Diet and lifestyle interventions are effective but are often temporary and many individuals regain weight. High-fat diet increases the excitability of AgRP neurons, a critical neuronal population for the regulation of food intake and body weight. Here we investigate the plasticity of AgRP neurons and the impact of high-fat diet on modulation by synaptic input. We find that diet-induced hyperexcitability of AgRP neurons is not reversed by a lower-fat diet intervention. High-fat diet is associated with changes in the synaptic modulation of AgRP neurons, with a paradoxical increase in inhibitory input accompanied by a loss of GABA-mediated inhibition due to a depolarizing shift in the reversal potential of the GABA-evoked Cl- current. These findings reveal that high-fat diet leads to decoupling of intrinsic and synaptic excitability in AgRP neurons, such that hyperexcitability of AgRP neurons persists despite an increase in inhibitory input, revealing a mechanism for the difficulty in sustaining weight loss.


2021 ◽  
pp. 2002121
Author(s):  
Ivo Calaresu ◽  
Jaime Hernandez ◽  
Rossana Rauti ◽  
Beatriz L. Rodilla ◽  
Ana Arché‐Núñez ◽  
...  

2021 ◽  
Author(s):  
Kang-Ying Qian ◽  
Wan-Xin Zeng ◽  
Yue Hao ◽  
Xian-Ting Zeng ◽  
Haowen Liu ◽  
...  

SUMMARYThe development of functional synapses in the nervous system is important for animal physiology and behaviors. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in C. elegans, the male pheromone increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites’ locomotion velocity and mating efficiency in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation by sexual dimorphic pheromones.


2021 ◽  
Vol 147 ◽  
pp. 110501
Author(s):  
Rif S. El-Mallakh ◽  
Ziad Ali

2021 ◽  
Vol 218 (2) ◽  
pp. 2170012
Author(s):  
Soeun Jin ◽  
Donguk Lee ◽  
Myonghoon Kwak ◽  
Ah Ra Kim ◽  
Hyunsang Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document