scholarly journals Deformation Quantization, Superintegrability and Nambu Mechanics

2004 ◽  
Vol 19 (3-4) ◽  
pp. 199-203 ◽  
Author(s):  
Cosmas K. Zachos ◽  
Thomas L. Curtright
2002 ◽  
Vol 4 ◽  
pp. 83-83 ◽  
Author(s):  
Thomas L Curtright ◽  
Cosmas K Zachos

1997 ◽  
Vol 183 (1) ◽  
pp. 1-22 ◽  
Author(s):  
G. Dito ◽  
M. Flato ◽  
D. Sternheimer ◽  
L. Takhtajan

1994 ◽  
Vol 09 (29) ◽  
pp. 2727-2732 ◽  
Author(s):  
DEBENDRANATH SAHOO ◽  
M. C. VALSAKUMAR

We investigate the problem of quantization of Nambu mechanics — a problem posed by Nambu [Phys. Rev.D7, 2405 (1973)] — along the line of Wigner–Weyl–Moyal (WWM) phase-space quantization of classical mechanics and show that the quantum analog of Nambu mechanics does not exist.


1995 ◽  
Vol 10 (05) ◽  
pp. 399-407 ◽  
Author(s):  
A. STERN ◽  
I. YAKUSHIN

We perform a deformation quantization of the classical isotropic rigid rotator. The resulting quantum system is not invariant under the usual SU (2) × SU (2) chiral symmetry, but instead [Formula: see text]. We give the energy spectrum for the resulting system.


2000 ◽  
Vol 11 (04) ◽  
pp. 523-551 ◽  
Author(s):  
VINAY KATHOTIA

We relate a universal formula for the deformation quantization of Poisson structures (⋆-products) on ℝd proposed by Maxim Kontsevich to the Campbell–Baker–Hausdorff (CBH) formula. We show that Kontsevich's formula can be viewed as exp (P) where P is a bi-differential operator that is a deformation of the given Poisson structure. For linear Poisson structures (duals of Lie algebras) his product takes the form exp (C+L) where exp (C) is the ⋆-product given by the universal enveloping algebra via symmetrization, essentially the CBH formula. This is established by showing that the two products are identical on duals of nilpotent Lie algebras where the operator L vanishes. This completely determines part of Kontsevich's formula and leads to a new scheme for computing the CBH formula. The main tool is a graphical analysis for bi-differential operators and the computation of certain iterated integrals that yield the Bernoulli numbers.


Sign in / Sign up

Export Citation Format

Share Document