scholarly journals On the Monotonicity of the Isoperimetric Quotient for Parallel Bodies

2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Christian Richter ◽  
Eugenia Saorín Gómez

AbstractThe isoperimetric quotient of the whole family of inner and outer parallel bodies of a convex body is shown to be decreasing in the parameter of definition of parallel bodies, along with a characterization of those convex bodies for which that quotient happens to be constant on some interval within its domain. This is obtained relative to arbitrary gauge bodies, having the classical Euclidean setting as a particular case. Similar results are established for different families of Wulff shapes that are closely related to parallel bodies. These give rise to solutions of isoperimetric-type problems. Furthermore, new results on the monotonicity of quotients of other quermassintegrals different from surface area and volume, for the family of parallel bodies, are obtained.

2018 ◽  
Vol 70 (4) ◽  
pp. 804-823 ◽  
Author(s):  
Apostolos Giannopoulos ◽  
Alexander Koldobsky ◽  
Petros Valettas

AbstractWe provide general inequalities that compare the surface area S(K) of a convex body K in ℝn to the minimal, average, or maximal surface area of its hyperplane or lower dimensional projections. We discuss the same questions for all the quermassintegrals of K. We examine separately the dependence of the constants on the dimension in the case where K is in some of the classical positions or K is a projection body. Our results are in the spirit of the hyperplane problem, with sections replaced by projections and volume by surface area.


1999 ◽  
Vol 51 (2) ◽  
pp. 225-249 ◽  
Author(s):  
U. Betke ◽  
K. Böröczky

AbstractLet M be a convex body such that the boundary has positive curvature. Then by a well developed theory dating back to Landau and Hlawka for large λ the number of lattice points in λM is given by G(λM) = V(λM) + O(λd−1−ε(d)) for some positive ε(d). Here we give for general convex bodies the weaker estimatewhere SZd (M) denotes the lattice surface area of M. The term SZd is optimal for all convex bodies and o(λd−1) cannot be improved in general. We prove that the same estimate even holds if we allow small deformations of M.Further we deal with families {Pλ} of convex bodies where the only condition is that the inradius tends to infinity. Here we havewhere the convex body K satisfies some simple condition, V(Pλ; K; 1) is some mixed volume and S(Pλ) is the surface area of Pλ.


2009 ◽  
Vol 46 (4) ◽  
pp. 493-514
Author(s):  
Gennadiy Averkov ◽  
Endre Makai ◽  
Horst Martini

K. Zindler [47] and P. C. Hammer and T. J. Smith [19] showed the following: Let K be a convex body in the Euclidean plane such that any two boundary points p and q of K , that divide the circumference of K into two arcs of equal length, are antipodal. Then K is centrally symmetric. [19] announced the analogous result for any Minkowski plane \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^2$$ \end{document}, with arc length measured in the respective Minkowski metric. This was recently proved by Y. D. Chai — Y. I. Kim [7] and G. Averkov [4]. On the other hand, for Euclidean d -space ℝ d , R. Schneider [38] proved that if K ⊂ ℝ d is a convex body, such that each shadow boundary of K with respect to parallel illumination halves the Euclidean surface area of K (for the definition of “halving” see in the paper), then K is centrally symmetric. (This implies the result from [19] for ℝ 2 .) We give a common generalization of the results of Schneider [38] and Averkov [4]. Namely, let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document} be a d -dimensional Minkowski space, and K ⊂ \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document} be a convex body. If some Minkowskian surface area (e.g., Busemann’s or Holmes-Thompson’s) of K is halved by each shadow boundary of K with respect to parallel illumination, then K is centrally symmetric. Actually, we use little from the definition of Minkowskian surface area(s). We may measure “surface area” via any even Borel function ϕ: Sd −1 → ℝ, for a convex body K with Euclidean surface area measure dSK ( u ), with ϕ( u ) being dSK ( u )-almost everywhere non-0, by the formula B ↦ ∫ B ϕ( u ) dSK ( u ) (supposing that ϕ is integrable with respect to dSK ( u )), for B ⊂ Sd −1 a Borel set, rather than the Euclidean surface area measure B ↦ ∫ BdSK ( u ). The conclusion remains the same, even if we suppose surface area halving only for parallel illumination from almost all directions. Moreover, replacing the surface are a measure dSK ( u ) by the k -th area measure of K ( k with 1 ≦ k ≦ d − 2 an integer), the analogous result holds. We follow rather closely the proof for ℝ d , which is due to Schneider [38].


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Tongyi Ma

Giannopoulos proved that a smooth convex body K has minimal mean width position if and only if the measure hK(u)σ(du), supported on Sn-1, is isotropic. Further, Yuan and Leng extended the minimal mean width to the minimal Lp-mean width and characterized the minimal position of convex bodies in terms of isotropicity of a suitable measure. In this paper, we study the minimal Lp-mean width of convex bodies and prove the existence and uniqueness of the minimal Lp-mean width in its SL(n) images. In addition, we establish a characterization of the minimal Lp-mean width, conclude the average Mp(K) with a variation of the minimal Lp-mean width position, and give the condition for the minimum position of Mp(K).


2014 ◽  
Vol 45 (2) ◽  
pp. 179-193
Author(s):  
Tong Yi MA ◽  
Li Li Zhang

For $p\geq 1$, Lutwak, Yang and Zhang introduced the concept of $p$-projection body, and Lutwak introduced the concept of $L_{p}-$ affine surface area of convex body. In this paper, we develop the Minkowski-Funk transform approach in the $L_{p}$-Brunn-Minkowski theory. We consider the question of whether $\Pi_{p}K\subseteq \Pi_{p}L$ implies $\Omega_{p}(K) \leq \Omega_{p}(L)$, where $\Pi_{p}K$ and $\Omega_{p}K$ denotes the $p-$projection body of convex body $K$ and the $L_{p}-$affine surface area of convex body $K$, respectively. We also formulate and solve a generalized $L_{p}-$Winterniz problem for Firey projections.


2015 ◽  
Vol 27 (2) ◽  
pp. 123-142 ◽  
Author(s):  
MARCELLA ANSELMO ◽  
DORA GIAMMARRESI ◽  
MARIA MADONIA

A setX⊆ Σ** of pictures is a code if every picture over Σ is tilable in at most one way with pictures inX. The definition ofstrong prefix codeis introduced. The family of finite strong prefix codes is decidable and it has a polynomial time decoding algorithm. Maximality for finite strong prefix codes is also studied and related to the notion of completeness. We prove that any finite strong prefix code can be embedded in a unique maximal strong prefix code that has minimal size and cardinality. A complete characterization of the structure of maximal finite strong prefix codes completes the paper.


2013 ◽  
Vol 821-822 ◽  
pp. 1307-1312
Author(s):  
Xin Yu Cui ◽  
Jian Min Gao ◽  
Xin Min Hao ◽  
Jin Ju Sun ◽  
Tian Ma ◽  
...  

Activated carbons are prepared from hemp stem with KOH as activating agent under different ratio of KOH to carbon conditions. The BET(Brunauer Emmett and Teller) specific surface area of the hemp stem-based activated carbons first increases and then decreases with the increasing ratio of KOH to carbon. The specific surface area, micropore surface area and volume of the activated carbons reach a maximum of 1589.27m2/g 1420.52m2/g, 89% of the total area, 0.751m3/g at the ratio of 4.5:1. The micropore size distribution shows the activated carbons contain a large number of ultramicropore and supermicropore.


2021 ◽  
Vol 8 (3) ◽  
pp. 202-209
Author(s):  
Ade Priyanto ◽  
Malik F ◽  
Muhdarina Muhdarina ◽  
Awaluddin A

Sugarcane Bagasse can be used as an adsorbent both under natural conditions and modified by chemical activation using sodium hydroxide (NaOH). Activation of sugarcane bagasse with NaOH was carried out at variations of 5:1, 10:1, and 20:1 (w/w). The absorption ability of bagasse adsorbent to methylene blue solution was carried out with the parameters of variation of contact time (60, 90, 120, 150, and 180 minutes), adsorbate concentration (20, 30, 40, 50, and 60 ppm) and temperature (30, 40, 50, and 60 oC). The adsorbent's characterization included determining the functional groups using FTIR, morphology, and mass of elements using SEM-EDX, and determining the surface area and volume of adsorbent pores using the BET methods. The highest adsorption percentage results were found in the NASB10:1 adsorbent at 99.50%. The optimum conditions for the NASB10:1 adsorbent are with a contact time of 120 minutes, an adsorbate concentration of 50 ppm, and a temperature of 30 oC or 303 K. The NASB10:1 adsorbent has the highest surface area compared to other adsorbents, namely 2.803 m2/g so that it can perform the maximum absorption of methylene blue.


1979 ◽  
Author(s):  
M Ribieto ◽  
J Elion ◽  
D Labie ◽  
F Josso

For the purification of the abnormal prothrombin (Pt Metz), advantage has been taken of the existence in the family of three siblings who, being double heterozygotes for Pt Metz and a hypoprothrombinemia, have no normal Pt. Purification procedures included barium citrate adsorption and chromatography on DEAE Sephadex as for normal Pt. As opposed to some other variants (Pt Barcelona and Madrid), Pt Metz elutes as a single symetrical peak. By SDS polyacrylamide gel electrophoresis, this material is homogeneous and appears to have the same molecular weight as normal Pt. Comigration of normal and abnormal Pt in the absence of SDS, shows a double band suggesting an abnormal charge for the variant. Pt Metz exhibits an identity reaction with the control by double immunodiffusion. Upon activation by factor Xa, Pt Metz can generate amydolytic activity on Bz-Phe-Val-Arg-pNa (S2160), but only a very low clotting activity. Clear abnormalities are observed in the cleavage pattern of Pt Metz when monitored by SDS gel electrophoresis. The main feature are the accumulation of prethrombin l (Pl) and the appearance of abnormal intermediates migrating faster than Pl.


2007 ◽  
Vol 3 (1) ◽  
pp. 89-113
Author(s):  
Zoltán Gillay ◽  
László Fenyvesi

There was a method developed that generates the three-dimensional model of not axisymmetric produce, based on an arbitrary number of photos. The model can serve as a basis for calculating the surface area and the volume of produce. The efficiency of the reconstruction was tested on bell peppers and artificial shapes. In case of bell peppers 3-dimensional reconstruction was created from 4 images rotated in 45° angle intervals. The surface area and the volume were estimated on the basis of the reconstructed area. Furthermore, a new and simple reference method was devised to give precise results for the surface area of bell pepper. The results show that this 3D reconstruction-based surface area and volume calculation method is suitable to determine the surface area and volume of definite bell peppers with an acceptable error.


Sign in / Sign up

Export Citation Format

Share Document