Polarization Resolved Grazing Angle Scatterometry for In Situ Monitoring of Roughness for Silicon and Compound Solar Cells, Light Emitting Devices and other Structured Surfaces

MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3129-3133
Author(s):  
Wojtek J. Walecki ◽  
Peter S. Walecki ◽  
Eve S. Walecki ◽  
Abigail S. Walecki

ABSTRACTNovel metrology tool for in-situ characterization of surfaces semiconductor solar cells (both silicon and compound), and Light Emitting Device diffusers is presented. The tool measures the total integrated scattering when measuring forward, or back-reflection at very large angles of incidence. The tool is insensitive to vibrations and stray light. We discuss polarization resolved data and characterize our technique using NIST traceable standards. We discuss it’s applications to semiconductor manufacturing.

2018 ◽  
Vol 10 (46) ◽  
pp. 39448-39454 ◽  
Author(s):  
Cheng Guo ◽  
Xiaoyu Gao ◽  
Fang-Ju Lin ◽  
Qianbin Wang ◽  
Lili Meng ◽  
...  

2018 ◽  
Vol 185 ◽  
pp. 283-286 ◽  
Author(s):  
L. Helmich ◽  
D.C. Walter ◽  
D. Bredemeier ◽  
R. Falster ◽  
V.V. Voronkov ◽  
...  

2005 ◽  
Vol 483-485 ◽  
pp. 1051-1056
Author(s):  
A. Krost ◽  
Armin Dadgar ◽  
F. Schulze ◽  
R. Clos ◽  
K. Haberland ◽  
...  

Due to the lack of GaN wafers, so far, group-III nitrides are mostly grown on sapphire or SiC substrates. Silicon offers an attractive alternative because of its low cost, large wafer area, and physical benefits such as the possibility of chemical etching, lower hardness, good thermal conductivity, and electrical conducting or isolating for light emitting devices or transistor structures, respectively. However, for a long time, a technological breakthrough of GaN-on-silicon has been thought to be impossible because of the cracking problem originating in the huge difference of the thermal expansion coefficients between GaN and silicon which leads to tensile strain and cracking of the layers when cooling down. However, in recent years, several approaches to prevent cracking and wafer bowing have been successfully applied. Nowadays, device-relevant thicknesses of crackfree group-III-nitrides can be grown on silicon. To reach this goal the most important issues were the identification of the physical origin of strains and its engineering by means of in situ monitoring during metalorganic vapor phase epitaxy.


2017 ◽  
Vol 29 (2) ◽  
pp. 022602 ◽  
Author(s):  
Wojtek J. Walecki ◽  
Peter S. Walecki ◽  
Eve S. Walecki ◽  
Abigail S. Walecki

Reproduction ◽  
2000 ◽  
pp. 325-335 ◽  
Author(s):  
A Calvo ◽  
LM Pastor ◽  
S Bonet ◽  
E Pinart ◽  
M Ventura

Lectin histochemistry was used to perform in situ characterization of the glycoconjugates present in boar testis and epididymis. Thirteen horseradish peroxidase- or digoxigenin-labelled lectins were used in samples obtained from healthy fertile boars. The acrosomes of the spermatids were stained intensely by lectins with affinity for galactose and N-acetyl-galactosamine residues, these being soybean, peanut and Ricinus communis agglutinins. Sertoli cells were stained selectively by Maackia ammurensis agglutinin. The lamina propria of seminiferous tubules showed the most intense staining with fucose-binding lectins. The Golgi area and the apical part of the principal cells of the epididymis were stained intensely with many lectins and their distribution was similar in the three zones of the epididymis. On the basis of lectin affinity, both testis and epididymis appear to have N- and O-linked glycoconjugates. Spermatozoa from different epididymal regions showed different expression of terminal galactose and N-acetyl-galactosamine. Sialic acid (specifically alpha2,3 neuraminic-5 acid) was probably incorporated into spermatozoa along the extratesticular ducts. These findings indicate that the development and maturation of boar spermatozoa are accompanied by changes in glycoconjugates. As some lectins stain cellular or extracellular compartments specifically, these lectins could be useful markers in histopathological evaluation of diseases of boar testis and epididymis.


1983 ◽  
Author(s):  
K. Arulanandan ◽  
Y. Dafalias ◽  
L. R. Herrmann ◽  
A. Anandarajah ◽  
N. Meegoda

2016 ◽  
Vol 108 (21) ◽  
pp. 211902 ◽  
Author(s):  
Xian Chen ◽  
Nobumichi Tamura ◽  
Alastair MacDowell ◽  
Richard D. James

ACS Catalysis ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1464-1484 ◽  
Author(s):  
Yong Han ◽  
Hui Zhang ◽  
Yi Yu ◽  
Zhi Liu

Sign in / Sign up

Export Citation Format

Share Document