Ab initio Study of the Amorphous Cu-Bi System

MRS Advances ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 81-86
Author(s):  
D. Hinojosa-Romero ◽  
I. Rodriguez ◽  
A. Valladares ◽  
R. M. Valladares ◽  
A. A. Valladares

ABSTRACTAs a pure element, bismuth is a semimetal which possesses several interesting physical properties, not all of them well understood. The recent discovery of superconductivity, as predicted by our group, and the increasing superconducting transition temperature as the pressure applied increases, are some examples of its particularities. Also, the fact that the amorphous phase is superconductive with a transition temperature several orders of magnitude larger than the crystalline at ambient pressure is unusual. These phenomena have also motivated our predictions for the transition temperatures of Bi-bilayers and the Bi-IV phase. When mixed with other elements, bismuth seems to contribute to the superconducting character of the resulting material. Here we study the binary copper-bismuth amorphous system which is known to superconduct in diverse compositions. Using ab initio molecular dynamics and the undermelt-quench method, we generate an amorphous structure for a 144-atom supercell corresponding to the Cu61Bi39 system. We calculate the electronic and vibrational densities of states for the amorphous system and estimate a superconducting critical temperature of 4.2 K for the amorphous state.

2013 ◽  
Vol 813 ◽  
pp. 327-331
Author(s):  
Wei Min Peng ◽  
Zhong Li Liu ◽  
Hong Zhi Fu

The electronic and the superconducting properties of Pd were studied in the framework of density functional perturbation theory. We explored the superconducting transition temperature for bulk Pd and predicted possible superconductivity at ambient and high pressures. It is found that of Pd is 0.0356 K at ambient pressure and it decreases with pressure.


2012 ◽  
Vol 1431 ◽  
Author(s):  
Paulo S. Branicio ◽  
Kewu Bai ◽  
H. Ramanarayan ◽  
David.T. Wu ◽  
Wendong Song ◽  
...  

ABSTRACTThe reversible switching between the amorphous and crystalline phases of Ge2Sb2Te5 (GST) is investigated with ab initio molecular dynamics. We apply different quench rates (-16 K/ps, -5 K/ps, -2 K/ps, and -0.45 K/ps) and different annealing temperatures (500 K, 600 K, 700 K, and 800 K) to amorphize and crystallize GST respectively. Results show that the generated amorphous is strongly dependent on the quench rate. For -16 K/ps and -5 K/ps, generated amorphous samples have different density of crystal seeds, higher in the later. The amorphous structure formed at -2 K/ps contains a single crystalline cluster, while that formed at the quench rate of -0.45 K/ps had sufficient time to completely crystallize the amorphous phase. Annealing the amorphous systems formed at different rates shows that crystallization depends both on the annealing temperature and on the structure of the initial system (i.e., whether or not it contains crystalline clusters or crystal seeds). At 500 K, formation of crystalline clusters occurs readily within a few ps while the rate at which they grow is slow, taking 0.9 ns to complete the crystallization. In contrast, crystalline cluster formation is inhibited at 800 K. In the intermediate temperature range, both crystalline cluster formation and growth occur within a few hundred ps indicating that these temperatures leads to the fastest crystallization. The crystallization of a 63-atom at ∼900 K resulted in a highly relaxed crystal structure showing a clear tendency for separation of Ge and Sb species in layers. This model also indicates a tendency of segregation of vacancies, suggesting that vacancy layering may play a key role in the crystallization process.


Sign in / Sign up

Export Citation Format

Share Document