Grain Growth, Stress, and Impurities in Electroplated Copper

2002 ◽  
Vol 17 (3) ◽  
pp. 582-589 ◽  
Author(s):  
S. H. Brongersma ◽  
E. Kerr ◽  
I. Vervoort ◽  
A. Saerens ◽  
K. Maex

The widely observed secondary grain growth in electroplated Copper layers is shown to be incomplete after the sheet resistance and stress of the layer appear to have stabilized. Instead the layer is in an intermediate state with a grain size distribution that depends on the plating conditions. Further extensive annealing at high temperatures results in an additional considerable enlargement of the grain structure, accompanied by an additional decrease of the sheet resistance and desorption of impurities that were incorporated during plating.

1992 ◽  
Vol 94-96 ◽  
pp. 325-330 ◽  
Author(s):  
Y. Takayama ◽  
T. Tozawa ◽  
H. Kato ◽  
Norio Furushiro ◽  
S. Hori

1996 ◽  
Vol 34 (8) ◽  
pp. 1225-1230 ◽  
Author(s):  
S. Vogel ◽  
P. Klimanek ◽  
D.Juul Jensen ◽  
H. Richter

2009 ◽  
Vol 1242 ◽  
Author(s):  
M. A. García ◽  
V. H. López M. ◽  
R. García H. ◽  
F. F. Curiel L. ◽  
R. R. Ambríz R.

ABSTRACTIn this work, aluminum weld beads were deposited on aluminum plates of commercial purity (12.7 mm thick), using an ER-5356 filler wire. The aim of the experiments was to assess the effects that yield the induction of an axial magnetic field (AMF) during the application of the weld beads using the direct current gas metal arc welding process (DC-GMAW). An external power source was use to induce magnetic fields between 0 to 28 mT. The effects of the magnetic fields were assessed in terms of the macrostructural features of the deposits, morphology of the grain structure, grain size and grain size distribution in the weld metal. Macrostructural characteristics of the weld beads revealed that increasing the intensity of the magnetic induction to produce a magnetic field above 14 mT, leads to a significant loss of feeding material and there is a tendency of the deposits to increase their width and reduce penetration. Perturbation of the weld pool induced by the application of the AMF noticeably modified the grain structure in the weld metal. In particular, for the intensities of 5 and 14 mT, columnar growth was essentially non-existent. Grain size distribution plots showed, generally speaking, that the use of magnetic fields is an efficient method to produce homogeneous grain structures within the weld metal. Finite element analysis was used to explain the weld bead geometry with the intensity of the magnetic field.


2005 ◽  
Vol 101-102 ◽  
pp. 315-318 ◽  
Author(s):  
Tomasz Wejrzanowski ◽  
Krzysztof Jan Kurzydlowski

1989 ◽  
Vol 53 (2) ◽  
pp. 164-169
Author(s):  
Yoshimasa Takayama ◽  
Tatsumi Tozawa ◽  
Hajime Kato ◽  
Norio Furushiro ◽  
Shigenori Hori

2004 ◽  
Vol 467-470 ◽  
pp. 1081-1086 ◽  
Author(s):  
M.W. Nordbakke ◽  
N. Ryum ◽  
Ola Hunderi

Computer simulations of 2D normal grain growth have shown that size correlations between adjacent grains exist in 2D grain structures. These correlations prevail during the coarsening process and influence on the kinetics of the process and on the grain size distribution. Hillert’s analysis starts with the assumption that all grains in the structure have the same environment. Since computer simulations contradict this assumption, the mean-field theory for normal grain growth needs to be modified. A first attempt was made by Hunderi and Ryum, who modified Hillert’s growth law to include the effect of spatial grain size correlations. In the 1D case the distributions derived by means of the modified growth law agreed well with simulation data. However, the distribution derived for 2D grain growth retained unwanted properties of the Hillert distribution. We review some recent progress in developing a mean-field statistical theory. A paradox related to curvilinear polygons is shown to support the expectation that the grain size distribution has a finite cutoff.


2007 ◽  
Vol 558-559 ◽  
pp. 1183-1188 ◽  
Author(s):  
Peter Streitenberger ◽  
Dana Zöllner

Based on topological considerations and results of Monte Carlo Potts model simulations of three-dimensional normal grain growth it is shown that, contrary to Hillert’s assumption, the average self-similar volume change rate is a non-linear function of the relative grain size, which in the range of observed grain sizes can be approximated by a quadratic polynomial. In particular, based on an adequate modification of the effective growth law, a new analytical grain size distribution function is derived, which yields an excellent representation of the simulated grain size distribution.


1989 ◽  
Vol 53 (3) ◽  
pp. 273-280
Author(s):  
Yoshimasa Takayama ◽  
Tatsumi Tozawa ◽  
Hajime Kato ◽  
Norio Furushiro ◽  
Shigenori Hori

Sign in / Sign up

Export Citation Format

Share Document