Combustion synthesis of mechanically activated powders in the Nb–Si system

2002 ◽  
Vol 17 (8) ◽  
pp. 1992-1999 ◽  
Author(s):  
Filippo Maglia ◽  
Chiara Milanese ◽  
Umberto Anselmi-Tamburini ◽  
Stefania Doppiu ◽  
Giorgio Cocco

The effect of the mechanical activation of the reactants on the self-propagating high-temperature synthesis (SHS) of niobium silicides was investigated. SHS experiments were performed on reactant powder blends of composition Nb:Si = 1:2 and Nb:Si = 5:3 pretreated for selected milling times. A self-sustaining reaction could be initiated when a sufficiently long milling time was employed. At short milling times, the reactions self-extinguished or propagated in an unsteady mode. Combustion peak temperature, wave velocity, and product composition were markedly influenced by the length of the milling treatment. Single-phase products could be obtained for sufficiently long milling times. Observation of microstructural evolution in quenched reactions together with isothermal experiments allowed clarification of the mechanism of the combustion process and the role played by the mechanical activation of the reactants.

2007 ◽  
Vol 280-283 ◽  
pp. 1021-1022 ◽  
Author(s):  
Ling Zhen Zhang ◽  
Chun Chao Zhang

In this paper, the SHS process was accomplished using titanium dioxide and aluminum powders as raw materials. It was found that the combustion process exhibited the self-spiral combustion mode and alumina whisker had formed. The morphology, microstructure and growth mechanism of alumina whisker were investigated.


2008 ◽  
Vol 111 (2-3) ◽  
pp. 463-468 ◽  
Author(s):  
H.Y. Wang ◽  
S.J. Lü ◽  
M. Zha ◽  
S.T. Li ◽  
C. Liu ◽  
...  

2003 ◽  
Vol 18 (8) ◽  
pp. 1842-1848 ◽  
Author(s):  
F. Maglia ◽  
C. Milanese ◽  
U. Anselmi-Tamburini ◽  
Z. A. Munir

Microalloying of MoSi2 to form Mo(1−x)MexSi2 (Me = Nb or V) was investigated by the self-propagating high-temperature synthesis method. With alloying element contents up to 5 at.%, a homogeneous C11b solid solution was obtained. For higher contents of alloying elements, the product contained both the C11b and the hexagonal C40 phases. The relative amount of the C40 phase increases with an increase in the content of alloying metals in the starting mixture. The alloying element content in the hexagonal C40 Mo(1−x)MexSi2 phase was nearly constant at a level of about 12 at.% for all starting compositions. In contrast, the content of the alloying elements in the tetragonal phase is considerably lower (around 4 at.%) and increases slightly as the Me content in the starting mixture is increased.


Author(s):  
Ю.Ю. Бачериков ◽  
И.П. Ворона ◽  
О.Б. Охрименко ◽  
В.П. Кладько ◽  
А.Г. Жук ◽  
...  

Abstract The ZnS:Mn, Mg powder is fabricated by self-propagating high-temperature synthesis with the simultaneous introduction of Mn and Mg impurities. It is found that the simultaneous introduction of Mn and Mg impurities leads to the nonuniform distribution of manganese forming regions with a lower and higher Mn concentration. In the latter case, the manganese ions form paramagnetic clusters. At the same time, numerous centers of self-activated luminescence form in the synthesized ZnS:Mn, Mg due to mechanical stress and lattice strain. Additional annealing leads to a more uniform Mn distribution in the formed ZnS:Mn, Mg phosphor, which is accompanied by an increase in the intensity of the manganese photoluminescence band and quenching of the self-activated luminescence band.


2000 ◽  
Vol 10 (8) ◽  
pp. 1925-1932 ◽  
Author(s):  
Louise Affleck ◽  
Marco D. Aguas ◽  
Ivan P. Parkin ◽  
Quentin A. Pankhurst ◽  
Maxim V. Kuznetsov

Sign in / Sign up

Export Citation Format

Share Document