Preparation of epitaxial Pb(Mg1/3Ta2/3)O3 thin film by chemical solution deposition

2002 ◽  
Vol 17 (11) ◽  
pp. 2884-2887 ◽  
Author(s):  
D. S. Jeong ◽  
J-H. Moon ◽  
B-T. Lee ◽  
J. H. Kim

Pb(Mg1/3Ta2/3)O3 (PMT) powders and heteroepitaxial thin films on (001) SrTiO3 (STO) substrates were prepared by the chemical solution deposition method. The phase development in PMT powders and thin films was investigated by x-ray diffraction, and the microstructure of PMT thin films was studied by transmission electron microscopy. Phase transformation from pyrochlore to perovskite in the PMT powder samples occurred in the temperature range of 700–800 °C, and perovskite phase was mainly observed in samples annealed above 800 °C. However, perovskite phase in PMT thin films on STO substrates was formed mainly in samples annealed as low as 750 °C/1 h, and it shows an epitaxial orientation relationship of [100](001)PMT∥[100](001)STO.

1999 ◽  
Vol 14 (11) ◽  
pp. 4395-4401 ◽  
Author(s):  
Seung-Hyun Kim ◽  
D. J. Kim ◽  
K. M. Lee ◽  
M. Park ◽  
A. I. Kingon ◽  
...  

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.


2001 ◽  
Vol 688 ◽  
Author(s):  
H. Uchida ◽  
H. Yoshikawa ◽  
I. Okada ◽  
H. Matsuda ◽  
T. Iijima ◽  
...  

AbstractBismuth titanate (Bi4Ti3O12; BIT) -based ferroelectric materials are proposed from the view of the “Site-engineering”, where the Bi-site ions are substituted by lanthanoid ions (La3+ and Nd3+) and Ti-site ions by other ions with higher charge valence (V5+). In the present study, influences of vanadium (V) - substitution for (Bi,M)4Ti3O12 thin films [M = lanthanoid] on the ferroelectric properties are evaluated. V-substituted (Bi,M)4Ti3O12 films have been fabricated using a chemical solution deposition (CSD) technique on the (111)Pt/Ti/SiO2/(100)Si substrate. Remnant polarization of (Bi,La)4Ti3O12 and (Bi,Nd)4Ti3O12 films has been improved by the V-substitution independent of the coercive field. The processing temperature of BLT and BNT films could also be lowered by the V-substitution.


1999 ◽  
Vol 14 (4) ◽  
pp. 1190-1193 ◽  
Author(s):  
J. H. Kim ◽  
A. T. Chien ◽  
F. F. Lange ◽  
L. Wills

Epitaxial PbZr0.5Ti0.5O3 (PZT) thin films were grown on top of a SrRuO3 epitaxial electrode layer on a (100) SrTiO3 substrate by the chemical solution deposition method at 600 °C. The microstructure of the PZT thin film was investigated by x-ray diffraction and transmission electron microscopy, and the ferroelectric properties were measured using the Ag/PZT/SRO capacitor structure. The PZT thin film has the epitaxial orientational relationship of (001) [010]PZT ║ (001) [010]SRO ║ (001) [010]STO with the substrate. The remnant (Pr ) and saturation polarization (Ps) density were measured to be Pr ~ 51.4 µC/cm2 and Ps ~ 62.1 µC/cm2 at 5 V, respectively. Ferroelectric fatigue measurements show that the net-switching polarization begins to drop (to 98% of its initial value) after 7 × 108 cycles.


1999 ◽  
Vol 14 (10) ◽  
pp. 4004-4010 ◽  
Author(s):  
J. H. Kim ◽  
F. F. Lange

Epitaxial PbZr0.5Ti0.5O3 (PZT) thin films were grown on (001) LaAlO3 substrates (∼6.1% lattice mismatch) by the chemical solution deposition method. The sequence of epitaxy during heating between 375 and 700 °C/1h was characterized by x-ray diffraction and transmission electron microscopy. At approximately 375 °C/1h, a nanocrystalline metastable fluorite phase of PZT was formed from the pyrolyzed amorphous precursor. At higher temperatures (400–425 °C/1h), thermodynamically stable PZT crystallites were first observed at the interface; with increasing higher temperatures, these nuclei grew across the interface and through the film toward the surface by consuming the metastable nanocrystalline fluorite grains. PZT thin films annealed above ∼500 °C/1h were observed to be dense with an epitaxial orientation relationship of [100](001)PZT‖[100](001)LAO. The metastable nanocrystalline fluorite to the stable single-crystal perovskite transformation gives an extra driving force by providing an additional decrease in free energy in addition to a driving force from the elimination of grain boundary area for epitaxy.


Sign in / Sign up

Export Citation Format

Share Document