Electric field-induced crack growth and domain-structure evolution for [100]- and [101]-oriented 72%Pb(Mg1/3Nb2/3) O3–28%PbTiO3 ferroelectric single crystals

2008 ◽  
Vol 23 (12) ◽  
pp. 3387-3395 ◽  
Author(s):  
F. Fang ◽  
W. Yang ◽  
F.C. Zhang ◽  
H. Qing

In situ observation of the electrically induced crack growth and domain-structure evolution is carried out for [100]- and [101]-oriented 72%Pb(Mg1/3Nb2/3)O3–28% PbTiO3 (PMN–PT 72/28) ferroelectric single crystals under static (poling) and alternating electric fields. On the same poling electric field, domains are in the stable engineered domain state where four equivalent polarization variants coexist for [100]-oriented single crystal, while parallel lines representing the 71° domain boundaries appear for [101]-oriented one. Under the same cyclic electric field, the [100]-oriented single crystal shows much higher crack propagation resistance than that of a [101]-oriented crystal. Apart from the material aspects, such as crystallographic fracture anisotropy and non-180° domain boundary structure, crack boundary condition plays an important role in determining the crack propagation behavior.

2015 ◽  
Vol 107 (7) ◽  
pp. 072909 ◽  
Author(s):  
Jinghan Gao ◽  
Qiang Li ◽  
Yuanyuan Li ◽  
Fangping Zhuo ◽  
Qingfeng Yan ◽  
...  

CrystEngComm ◽  
2018 ◽  
Vol 20 (35) ◽  
pp. 5169-5179 ◽  
Author(s):  
Yaming Zhou ◽  
Qiang Li ◽  
Chao Xu ◽  
Fangping Zhuo ◽  
Donglin Liu ◽  
...  

Anisotropic temperature–electric field phase diagrams are established based on microscopic domain observation and macroscopic dielectric and strain properties.


2007 ◽  
Vol 336-338 ◽  
pp. 42-45
Author(s):  
Zhen Rong Li ◽  
Jun Jie Qian ◽  
Guo Qiang Zhang ◽  
Zeng Zhe Xi ◽  
Zhuo Xu ◽  
...  

The dielectric response of [110]-oriented 0.68PMN-0.32PT single crystal under dc electric field has been investigated. The characteristics of phase transition under temperature and dc electric field are provided. When electric field is above 2.3kV/cm, abnormal phase transition is induced by temperature and electric field, which corresponds to the phase transition from rhombohedral to orthorhombic ferroelectric phase. With increasing dc electric field, the stable temperature region of orthorhombic phase is expanded. The electric field-temperature (E-T) phase diagram of [110]-oriented 0.68PMN-0.32PT single crystals is presented. The polarization rotation in [110]-oriented single crystal is discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Ding ◽  
Lu-sheng Wang ◽  
Kun Song ◽  
Bo Liu ◽  
Xia Huang

The crack propagation process in single-crystal aluminum plate (SCAP) with central cracks under tensile load was simulated by molecular dynamics method. Further, the effects of model size, crack length, temperature, and strain rate on strength of SCAP and crack growth were comprehensively investigated. The results showed that, with the increase of the model size, crack length, and strain rate, the plastic yield point of SCAP occurred in advance, the limit stress of plastic yield decreased, and the plastic deformability of material increased, but the temperature had less effect and sensitivity on the strength and crack propagation of SCAP. The model size affected the plastic deformation and crack growth of the material. Specifically, at small scale, the plastic deformation and crack propagation in SCAP are mainly affected through dislocation multiplication and slip. However, the plastic deformation and crack propagation are obviously affected by dislocation multiplication and twinning in larger scale.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 95-98 ◽  
Author(s):  
K.-H. Ebeling ◽  
R. Eder ◽  
E. Hagn ◽  
E. Zech ◽  
M. Deicher

The techniques of quadrupole-interaction nuclear-orientation and quadrupole-interaction-resolvedNMR on oriented nuclei were applied to radioactive 111In (T1/2 = 2.8 d), 198Au(T1/2= 2.7 d) and 199Au (T1/2 = 3.1 d), mass-separator-implanted into single crystals of hep Coand hep Gd. For 111InGd the quadrupole interaction was observed via the broadening of theresonance and the dependence of the effective quadrupole interaction on the angle θbetween thec-axis of the single crystal and the direction of magnetization. For 198AuGd the large electric fieldgradient known from the literature could not be confirmed. For 198AuCo and 199AuCo thequadrupole substructure has been resolved, and the electric field gradient of Au in hep Co was determined to be -0.84(4) x 1017V/cm2. The magnetic hyperfine fields of Au in hep and fee Codiffer by about 20%. These experiments have shown that hep Co may be a good host matrix forthe determination of the quadrupole interaction of heavy radioactive nuclei with resonanceprecision.


2009 ◽  
Vol 15 (5) ◽  
pp. 435-440 ◽  
Author(s):  
Andreja Benčan ◽  
Elena Tchernychova ◽  
Matjaž Godec ◽  
John Fisher ◽  
Marija Kosec

AbstractIn this work we investigated the chemical composition and structure of (K0.5Na0.5)NbO3 (KNN) single crystals grown by the solid state crystal growth method. The optical, scanning, and transmission electron microscopies were employed for the analysis of the chemical homogeneity and domain structure of the KNN crystal. No compositional inhomogeneities within experimental error were encountered in the KNN single crystals. The domain structure of the KNN single crystal, with a monoclinic unit cell, is composed of large 90° domains of up to 100 μm width, which further consist of smaller 180° domains with widths from 50 to 300 nm.


2020 ◽  
Vol 8 (6) ◽  
pp. 2155-2159
Author(s):  
Mingliang Li ◽  
Tingcong Jiang ◽  
Xiaoge Wang ◽  
Hongliang Chen ◽  
Shuo Li ◽  
...  

Device arrays are fabricated with organic single crystals epitaxially grown on highly oriented iPP films by solvent vapor annealing.


Sign in / Sign up

Export Citation Format

Share Document