Fabrication of 3D wax/silica/Ag(Au) colloidosomes as surface-enhanced Raman spectroscopy substrates based on Pickering emulsion and seed-mediated growth method of noble metal nanoparticles

2019 ◽  
Vol 34 (12) ◽  
pp. 2137-2145
Author(s):  
Ke Wang ◽  
Lihua Feng ◽  
Xiyong Li ◽  
Wenqin Wang

Abstract

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7443
Author(s):  
Jorge Jimenez-Cisneros ◽  
Juan Pablo Galindo-Lazo ◽  
Miguel Angel Mendez-Rojas ◽  
Jessica Rosaura Campos-Delgado ◽  
Monica Cerro-Lopez

As surface-enhanced Raman spectroscopy (SERS) continues developing to be a powerful analytical tool for several probes, four important aspects to make it more accessible have to be addressed: low-cost, reproducibility, high sensibility, and recyclability. Titanium dioxide nanotubes (TiO2 NTs) prepared by anodization have attracted interest in this field because they can be used as safe solid supports to deposit metal nanoparticles to build SERS substrate nanoplatforms that meet these four desired aspects. TiO2 NTs can be easily prepared and, by varying different synthesis parameters, their dimensions and specific features of their morphology can be tuned allowing them to support metal nanoparticles of different sizes that can achieve a regular dispersion on their surface promoting high enhancement factors (EF) and reproducibility. Besides, the TiO2 photocatalytic properties enable the substrate’s self-cleaning property for recyclability. In this review, we discuss the different methodological strategies that have been tested to achieve a high performance of the SERS substrates based on TiO2 NTs as solid support for the three main noble metal nanoparticles mainly studied for this purpose: Ag, Au, and Pt.


2004 ◽  
Vol 818 ◽  
Author(s):  
Vitaliy N. Pustovit ◽  
Tigran V. Shahbazyan

AbstractWe study the role of a strong electron confinement on the surface-enhanced Raman scattering from molecules adsorbed on small noble-metal nanoparticles. We describe a novel enhancement mechanism which originates from the different effect that confining potential has on s-band and d-band electrons. We demonstrate that the interplay between finite-size and screening efects in the nanoparticle surface layer leads to an enhancement of the surface plasmon local field acting on a molecule located in a close proximity to the metal surface. Our calculations show that the additional enhancement of the Raman signal is especially strong for small nanometer-sized nanoparticles.


2008 ◽  
Vol 20 (22) ◽  
pp. 6939-6944 ◽  
Author(s):  
Chengmin Shen ◽  
Chao Hui ◽  
Tianzhong Yang ◽  
Congwen Xiao ◽  
Jifa Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document