Mathematical and numerical modeling of liquid crystal elastomer phase transition and deformation

2012 ◽  
Vol 1403 ◽  
Author(s):  
Mariarita de Luca ◽  
A. DeSimone

ABSTRACTLiquid crystal (in particular, nematic) elastomers consist of cross-linked flexible polymer chains with embedded stiff rod molecules that allow them to behave as a rubber and a liquid crystal. Nematic elastomers are characterized by a phase transition from isotropic to nematic past a temperature threshold. They behave as rubber at high temperature and show nematic behavior below the temperature threshold. Such transition is reversible. While in the nematic phase, the rod molecules are aligned along the direction of the ’’nematic director’’. This molecular rearrangement induces a stretch in the polymer chains and hence macroscopic spontaneous deformations. The coupling between nematic order parameter and deformation gives rise to interesting phenomena with a potential for new interesting applications. In the biological field, the ability to considerably change their length makes them very promising as artificial muscles actuators. Their tunable optical properties make them suitable, for example, as lenses for new imaging systems.We present a mathematical model able to describe the behavior of nematic elastomers and numerical simulations reproducing such peculiar behavior. We use a geometrically linear version of the Warner and Terentjev model [1] and consider cooling experiments and stretching experiments in the direction perpendicular to the one of the director at cross-linking.

1993 ◽  
Vol 328 ◽  
Author(s):  
A. Ten Bosch ◽  
L. Varichon

ABSTRACTA theory based on an elastic model and including coupling between elastic deformation and nematic order parameter as well as an interaction between crosslinks and orientation is given. The nematic order parameter and the stress tensor have been determined on elongation and as a function of temperature as well as he anisotropy of the conformation of a side chain liquid crystal elastomer on application of a mechanical stress. A transition from a turbid, low ordered polydomain phase to a transparent, Monodomain is shown to occur.


2019 ◽  
Vol 3 (11) ◽  
pp. 2499-2506 ◽  
Author(s):  
Bin Ni ◽  
Hui Chen ◽  
Mengxue Zhang ◽  
Patrick Keller ◽  
Michael Tatoulian ◽  
...  

Liquid crystal elastomer micropillars containing β-cyano-OPV crosslinkers contract reversibly at nematic–isotropic (N–I) phase transition and undergo fluorescence intensity change. This luminescent variation is mainly caused by N–I phase change.


2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


2017 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Stephen Schrettl ◽  
Nicholas B. Tito ◽  
Ye Yang ◽  
Malavika Nair ◽  
...  

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.


2021 ◽  
Vol 560 ◽  
pp. 441-455
Author(s):  
Jundong Wu ◽  
Wenjun Ye ◽  
Yawu Wang ◽  
Chun-Yi Su

Small ◽  
2021 ◽  
pp. 2100910
Author(s):  
Keumbee Kim ◽  
Yuanhang Guo ◽  
Jaehee Bae ◽  
Subi Choi ◽  
Hyeong Yong Song ◽  
...  

Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3128-3136
Author(s):  
Suzuka Okamoto ◽  
Shinichi Sakurai ◽  
Kenji Urayama

Stretching angle for a main-chain liquid crystal elastomer has pronounced effects on the width of the stress plateau as well as the ultimate elongation, while it has no effect on the plateau height.


Sign in / Sign up

Export Citation Format

Share Document