Piezoelectricity in Monolayers and Bilayers of Inorganic Two-Dimensional Crystals

2013 ◽  
Vol 1556 ◽  
Author(s):  
Karel-Alexander N. Duerloo ◽  
Mitchell T. Ong ◽  
Evan J. Reed

ABSTRACTThe symmetry properties of many inorganic two-dimensional monolayer crystals make them piezoelectric, whereas their three-dimensional parent crystals are not. The emergence of piezoelectricity in the single-layer limit points toward intriguing electromechanical effects and applications in the single- or few-layer regime. We use density functional theory to calculate the piezoelectric coefficients of BN, MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2. These coefficients are found to be comparable to, and in some cases greater than those of commonly used wurtzite piezoelectrics. The centrosymmetry of a BN bilayer prevents a piezoelectric effect for this structure. However, by developing an elastic model, we find that the bilayer exhibits an unusual electromechanical coupling to the curvature, similar to that of a bimorph. A BN bilayer is found to amplify the constituent monolayers’ in-plane piezoelectric displacements by factors on the order of 103-104 into out-of plane deflections.

2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


Author(s):  
Li-Ren Ng ◽  
Guan-Fu Chen ◽  
Shi-Hsin Lin

We calculated the piezoelectric properties of asymmetrically defected MoS2 with density functional theory. By creating uneven numbers of defects on the either sides of two-dimensional MoS2, the out-of-plane centrosym- metry...


2016 ◽  
Vol 18 (32) ◽  
pp. 22122-22128 ◽  
Author(s):  
Fernando Buendía ◽  
Jorge A. Vargas ◽  
Marcela R. Beltrán ◽  
Jack B. A. Davis ◽  
Roy L. Johnston

The combined use of a genetic algorithm and Density Functional Theory (DFT) calculations allows us to explore the potential energy surface. Our results show interesting effects on the geometries of the clusters on deposition. Two-dimensional clusters in the gas phase become three-dimensional and vice versa.


Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 295 ◽  
Author(s):  
Gunniya Gunasekar ◽  
Kwangho Park ◽  
Hyeonseok Jeong ◽  
Kwang-Deog Jung ◽  
Kiyoung Park ◽  
...  

The catalytic reactivity of molecular Rh(III)/Ir(III) catalysts immobilized on two- and three-dimensional Bipyridine-based Covalent Triazine Frameworks (bpy-CTF) for the hydrogenation of CO2 to formate has been described. The heterogenized Ir complex demonstrated superior catalytic efficiency over its Rh counterpart. The Ir catalyst immobilized on two-dimensional bpy-CTF showed an improved turnover frequency and turnover number compared to its three-dimensional counterpart. The two-dimensional Ir catalyst produced a maximum formate concentration of 1.8 M and maintained its catalytic efficiency over five consecutive runs with an average of 92% in each cycle. The reduced activity after recycling was studied by density functional theory calculations, and a plausible leaching pathway along with a rational catalyst design guidance have been proposed.


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


2020 ◽  
Author(s):  
Xianjue Chen ◽  
Marc Dubois ◽  
Silvana Radescu Cioranescu ◽  
Aditya Rawal ◽  
Chuan Zhao

Fluorinated single-layer diamond (“F-diamond”) is a new form of two-dimensional carbon allotrope. Herein, poly(dicarbon monofluoride) (C<sub>2</sub>F)<sub>n</sub> that is essentially made of stacked layers of “F-diamane” has been synthesized and exfoliated in a variety of solvents to yield well-dispersed ultrathin sheets. Microscopic and spectroscopic analyses revealed that the exfoliated sheets retained the “F-diamane”-like structure. The experimental results are supported by the density functional theory (DFT) calculations.


RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42455-42461 ◽  
Author(s):  
Dan Liang ◽  
Ruge Quhe ◽  
Yingjie Chen ◽  
Liyuan Wu ◽  
Qian Wang ◽  
...  

Motivated by potential extensive applications in nanoelectronics devices, we calculate structural and optoelectronic properties of two-dimensional InN as well as its three-dimensional counterparts by using density functional theory.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39546-39555 ◽  
Author(s):  
Ming-Yang Liu ◽  
Yang Huang ◽  
Qing-Yuan Chen ◽  
Ze-Yu Li ◽  
Chao Cao ◽  
...  

Based on first-principles density functional theory calculations, we systemically study the properties of two-dimensional buckled single-layer bismuth (b-bismuthene).


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Melanie Walker ◽  
Kelvin Jones ◽  
DaiQuan Noble ◽  
Marquavias Walker ◽  
Douglas L. Strout

Boron nitride is a material similar to carbon in its ability to adopt numerous molecular forms, including two-dimensional sheets and three-dimensional cages and nanotubes. Boron nitride single molecules, such as B12N12, have isomeric forms that include rings and sheets, as well as cage forms analogous and isoelectronic to the carbon fullerenes. Such cages tend to be composed of squares and hexagons to allow perfect alternation of boron and nitrogen atoms, which is possible because of the 1 : 1 ratio of boron-to-nitrogen atoms. What about molecules in which this 1 : 1 ratio does not apply? In the current study, theoretical calculations are carried out on molecules of B10N14 to determine energetically favorable isomers. Density functional theory is used in conjunction with Dunning basis sets. Cage, sheet, and ring isomers are considered. Energetic trends are calculated and discussed, in comparison to comparable studies on B12N12.


Sign in / Sign up

Export Citation Format

Share Document