Effect of Copper Sulfide nanocrystals in a Poly(3-hexylthiophene)/Titania solar cell

2013 ◽  
Vol 1537 ◽  
Author(s):  
Priscilla V. Quintana-Ramírez ◽  
M. C. Arenas

ABSTRACTPoly(3-hexylthiophene)/Titania (P3HT/TiO2) heterojunction has been widely studied in the field of hybrid solar cells. Usually, organic dyes shift the neat TiO2 absorption edge toward the visible range improving the conversion efficiency or/and the TiO2 surface is modified with ligands in order to increase the electron transport. On the other hand, copper sulfide, non-toxic semiconductor, has been included in bulk organic P3HT based solar cell, increasing the photocurrent density of devices. Therefore, we propose the use of copper sulfide in the hybrid TiO2/P3HT heterojunction to determine its effect in the performance of TiO2/P3HT solar cell. Copper sulfide nanocrystals (CuxS) were synthesized at 230 °C, 240 °C and 260 °C and, they were mixed with P3HT in order to form P3HT:CuxS bulk heterojunctions. Scattered grains and irregular morphology in the final topography of the reference device (P3HT/TiO2 heterojunction) were observed by AFM, while a granular morphology and a few pores like craters were observed in the devices containing P3HT:CuxS bulk heterojunctions. Chalcocite phase (Cu2S) was obtained at 230 and 240°C and, digenite (Cu1.8S) phase at 260°C, both copper sulfide phases are very promising for solar cells. Despite this, poor rectifications in the devices were found in the current-voltage curves of the devices containing copper sulfide nanocrystals in contrast to the P3HT/TiO2 cell (device without nanocrystals), it could be due to the current leakage or recombination process in the copper sulfide/TiO2 interface. It suggests future work in order to improve the devices.

2017 ◽  
Vol 5 (1) ◽  
pp. 210-220 ◽  
Author(s):  
R. Singh ◽  
J. Lee ◽  
M. Kim ◽  
P. E. Keivanidis ◽  
K. Cho

In this contribution, we studied the effects of 3D molecular geometry in non-fullerene solar cells based on perylene diimide small molecules.


2013 ◽  
Vol 771 ◽  
pp. 39-51 ◽  
Author(s):  
I. Jinchu ◽  
C.O. Sreekala ◽  
K.S. Sreelatha

The molecular dye is an essential component of the Dye sensitized solar cell (DSSC), and improvements in efficiency over the last 15 years have been achieved by tailoring the optoelectronic properties of the dye. The most successful dyes are based on ruthenium bipyridyl compounds, which are characterized by a large absorption coefficient in the visible part of the solar spectrum, good adsorption properties, excellent stability, and efficient electron injection. However, ruthenium-based compounds are relatively expensive, and organic dyes with similar characteristics and even higher absorption coefficients have recently been reported; solar cells with efficiencies of up to 9% have been reported. Organic dyes with a higher absorption coefficient could translate into thinner nanostructured metal oxide films, which would be advantageous for charge transport both in the metal oxide and in the permeating phase, allowing for the use of higher viscosity materials such as ionic liquids, solid electrolytes or hole conductors. Organic dyes used in the DSSC often bear a resemblance to dyes found in plants, fruits, and other natural products, and several dye-sensitized solar cells with natural dyes have been reported. This paper gives an over-view of the recent works in DSSC using the natural dyes as chromophores.


2014 ◽  
Vol 1008-1009 ◽  
pp. 78-81
Author(s):  
Nair Gomesh ◽  
Z. M. Arief ◽  
Syafinar Ramli ◽  
M Irwanto ◽  
Y. M. Irwan ◽  
...  

Dye Sensitized Solar Cells (DSSC) is another kind of solar cell from the third generation that forms a photovoltaic. DSSC is designed to reduce cost from usage of expensive material in conventional solar panels. The purpose of this project is to fabricate and compare dye sensitized solar cells (DSSC) by using organic dye from blueberry and blue dye from chemical substances. The DSSC is fabricated using ‘Doctor Blade’ method. Results are based on investigating the electrical performance and characteristic of the fabricated TiO2 solar cell based on these comparisons of dyes in order to investigate the potential of organic dyes as a light absorbing mechanism. The required data that is investigated are the open circuit voltage, Voc, short circuit current, Isc, fill factors, solar cells efficiency and UV absorption. Result shows good potential in the blueberry dyes as a sensitizer but further investigation is needed in order to fully understand the characteristic of these organic dyes.


2014 ◽  
Vol 15 (10) ◽  
pp. 2518-2525 ◽  
Author(s):  
Sankara Rao Gollu ◽  
Ramakant Sharma ◽  
G. Srinivas ◽  
Souvik Kundu ◽  
Dipti Gupta

ChemPhysChem ◽  
2015 ◽  
Vol 17 (5) ◽  
pp. 771-776 ◽  
Author(s):  
Lige Liu ◽  
Chang Liu ◽  
Wenping Fu ◽  
Luogen Deng ◽  
Haizheng Zhong

2020 ◽  
Vol 995 ◽  
pp. 71-76
Author(s):  
Aaron Glenn ◽  
Conor Mc Loughlin ◽  
Hind Ahmed ◽  
Hoda Akbari ◽  
Subhash Chandra ◽  
...  

The main energy losses in solar cells are related to spectral losses where high energy photons are not used efficiently, and energy is lost via thermalization which reduces the solar cell’s overall efficiency. A way to tackle this is to introduce a luminescent down-shifting layer (LDS) to convert these high energy photons into a lower energy bracket helping the solar cell to absorb them and thus generating a greater power output. In this paper, lumogen dye Violet 570 has been used as LDS coated films of 10μm and 60μm placed on top of Si solar cells. The dye was incorporated into polymer films of Polyvinyl Butyral (PVB) and Polymethyl Methacrylate (PMMA) after which they were tested for their absorption, transmission and emission properties. Once optimised layers had been determined, they were deposited directly onto silicon solar cells and the external quantum efficiency (EQE) of the Si solar cells were measured with and without the LDS layers. The resulting graphs have shown an increase of up to 2.9% in the overall EQE efficiency after the lumogen films had been applied.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Joe Otsuki ◽  
Yusho Takaguchi ◽  
Daichi Takahashi ◽  
Palanisamy Kalimuthu ◽  
Surya Prakash Singh ◽  
...  

We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs). Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident photon-to-current conversion efficiency (IPCE) spectrum was consistent with the absorption spectrum and resulted in a high short-circuit photocurrent density (Jsc) of 8.8 mA cm-2. PK0002 showed higher IPCE values than PK0003 in the 520–800 nm region. Under standard AM 1.5 irradiation (100 mW cm-2) and using an electrolyte consisting of 0.6 M dimethylpropyl-imidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile, a solar cell containing sensitizer PK0002 yielded a short-circuit photocurrent density of 7.7 mA cm-2, an open-circuit photovoltage of 0.57 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.1%.


2015 ◽  
Vol 51 (18) ◽  
pp. 3915-3918 ◽  
Author(s):  
C. J. Wood ◽  
G. H. Summers ◽  
E. A. Gibson

New donor–π–acceptor dyes functionalised with a bodipy or indolium acceptor are described, which have an excellent spectral response in the red region and generate record photocurrent in tandem dye-sensitized solar cells. Our cationic acceptor dye, CAD3, generated a cathodic photocurrent density of 8.2 mA cm−2, the highest reported for a NiO p-type solar cell to date.


Sign in / Sign up

Export Citation Format

Share Document