A Highly Soluble Redox Shuttle with Superior Rate Performance in Overcharge Protection

2015 ◽  
Vol 1740 ◽  
Author(s):  
Susan A. Odom ◽  
Aman Kaur ◽  
Selin Ergun ◽  
Corrine F. Elliott ◽  
Matthew D. Casselman

ABSTRACTThe demand for a stable and compatible redox shuttles for use in lithium-ion batteries has prompted us to explore strategies to tune and improve the properties of redox shuttles. We have studied over 50 new diarylamine derivatives synthesized in our laboratory including one compound in which we introduced trifluoromethyl groups (–CF3) at the positions para to the nitrogen atom in N-ethylphenothiazine (EPT). The high electronegativity of the CF3 group raises the oxidation potential, and its incorporation also significantly increases solubility in battery electrolyte. Here we report 3,7-bis(trifluoromethyl)-N-ethylphenothiazine (BCF3EPT) as a new redox shuttle, which we have observed to have the highest reported solubility in battery electrolyte of all redox shuttles that maintain extended overcharge performance. We have compared its performance with 1,3-di-tert-butyl-2,5-dimethoxybenzene (DBB), EPT, and other robust redox shuttles. In our hands, overcharge cycling of BCF3EPT far surpasses any reported redox shuttle, and – because it can be dissolved at higher concentrations – it tolerates faster charging rates than both DBB and EPT.

2015 ◽  
Vol 1740 ◽  
Author(s):  
Susan A. Odom ◽  
Matthew Casselman ◽  
Aman Preet Kaur ◽  
Selin Ergun ◽  
Naijao Zhang

ABSTRACTThe performance of aromatic compounds as redox shuttles for overcharge protection in lithium-ion batteries is quite variable and is often difficult to predict. Redox shuttles may decompose in battery electrolyte in their neutral and radical cation forms, both of which are present during overcharge protection. While hundreds of compounds have been evaluated as redox shuttle candidates and a few have stood out as top performers, the reasons for increased stability over similar candidates with slightly different structures is often unclear, and the exploration of decomposition of redox shuttles has been severely limited, restricting our ability to design improved versions of redox shuttles that do not suffer from the same reactions in lithium-ion batteries. To better understand the stability and reactivity of redox shuttles (also relevant to the improvement of positive electrode materials in non-aqueous redox flow batteries) our research has focused on measuring the stability of neutral and oxidized forms of redox shuttle candidates as well as using a variety of spectroscopic methods to analyze the byproducts of decomposition, both from radical cations generated in model solvents and electrolytes from postmortem analysis of failed batteries.


2020 ◽  
Vol 44 (26) ◽  
pp. 11349-11355 ◽  
Author(s):  
Selin Ergun ◽  
Matthew D. Casselman ◽  
Aman Preet Kaur ◽  
N. Harsha Attanayake ◽  
Sean R. Parkin ◽  
...  

N-Ethyl-3,7-bis(trifluoromethyl)phenothiazine is a highly soluble redox shuttle for overcharge protection in lithium-ion batteries with an oxidation potential of ca. 3.8 V vs. Li+/0 in carbonate solvents.


2021 ◽  
Author(s):  
Susan A. Odom

Overcharge protection of Li-ion batteries with a variety of phenothiazine derivatives.


Author(s):  
Truptimayee Acharya ◽  
Anshuman Chaupatnaik ◽  
Anil Pathak ◽  
Amritendu Roy ◽  
Soobhankar Pati

RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43551-43555 ◽  
Author(s):  
Mengmeng Zhen ◽  
Xiao Zhang ◽  
Lu Liu

Novel bi-component-active hierarchical ZnO/ZnCo2O4 nanosheets with mesostructures presented a good high-rate performance for lithium ion batteries.


2017 ◽  
Vol 52 (12) ◽  
pp. 7140-7148 ◽  
Author(s):  
Lijuan Wang ◽  
Xiaojie Wang ◽  
Zhaohui Meng ◽  
Hongjiang Hou ◽  
Baokuan Chen

2018 ◽  
Vol 212 ◽  
pp. 198-201 ◽  
Author(s):  
Xiaochuan Chen ◽  
Renpin Liu ◽  
Lingxing Zeng ◽  
Xiaoxia Huang ◽  
Yixing Fang ◽  
...  

2016 ◽  
Vol 3 (11) ◽  
pp. 1915-1921 ◽  
Author(s):  
Seong-Hyo Park ◽  
Hyeon Jin Kim ◽  
Joomi Jeon ◽  
Yongsu Choi ◽  
Jeong-Ju Cho ◽  
...  

2010 ◽  
Vol 177 ◽  
pp. 208-210
Author(s):  
Yi Jie Gu ◽  
Cui Song Zeng ◽  
Yu Bo Chen ◽  
Hui Kang Wu ◽  
Hong Quan Liu ◽  
...  

Olivine compounds LiFePO4 were prepared by the solid state reaction, and the electrochemical properties were studied with the composite cathode of LiFePO4/mesocarbon nanobead. High discharge rate performance can be achieved with the designed composite cathode of LiFePO4/mesocarbon nanobead. According to the experiment results, batteries with the composite cathode deliver discharge capacity of 1087mAh for 18650 type cell at 20C discharge rate at room temperature. The analysis shows that the uniformity of mesocarbon nanobead around LiFePO4 can supply enough change for electron transporting, which can enhance the rate capability for LiFePO4 cathode lithium ion batteries. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable to electric vehicle application.


Nanoscale ◽  
2019 ◽  
Vol 11 (34) ◽  
pp. 15881-15891 ◽  
Author(s):  
Yong Xu ◽  
Jun Chen ◽  
Ze'en Xiao ◽  
Caixia Ou ◽  
Weixia Lv ◽  
...  

A novel porous diatomite composite electrode composed of NTCDA nanowires exhibits lower charge transfer impedance, higher capacity and better rate performance.


Sign in / Sign up

Export Citation Format

Share Document