Magnetic Aging

2005 ◽  
Vol 887 ◽  
Author(s):  
R. Skomski ◽  
J. Zhou ◽  
R. D. Kirby ◽  
D. J. Sellmyer

ABSTRACTThermally activated magnetization reversal is of great importance in areas such as permanent magnetism and magnetic recording. In spite of many decades of scientific research, the phenomenon of slow magnetization dynamics has remained partially controversial. It is now well-established that the main mechanism is thermally activated magnetization reversal, as contrasted to eddy currents and structural aging, but the identification of the involved energy barriers remains a challenge for many systems. Thermally activated slow magnetization processes proceed over energy barriers whose structure is determined by the micromagnetic free energy. This restricts the range of physically meaningful energy barriers. An analysis of the underlying micromagnetic free energy yields power-law dependences with exponents of 3/2 or 2 for physically reasonable models, in contrast to arbitrary exponents m and to 1/H-type laws.

2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


10.2741/3104 ◽  
2008 ◽  
Vol Volume (13) ◽  
pp. 5614 ◽  
Author(s):  
Mookyung Cheon
Keyword(s):  

2013 ◽  
Vol 325 ◽  
pp. 13-16 ◽  
Author(s):  
Hun-Sung Lee ◽  
Kwang-Su Ryu ◽  
Chun-Yeol You ◽  
Kun-Rok Jeon ◽  
See-Hun Yang ◽  
...  

2012 ◽  
Vol 85 (20) ◽  
Author(s):  
Kenichi Koizumi ◽  
Mauro Boero ◽  
Yasuteru Shigeta ◽  
Atsushi Oshiyama

Langmuir ◽  
2014 ◽  
Vol 30 (19) ◽  
pp. 5412-5421 ◽  
Author(s):  
Eddy Pazmino ◽  
Jacob Trauscht ◽  
Brittany Dame ◽  
William P. Johnson

2014 ◽  
Vol 16 (45) ◽  
pp. 24913-24919 ◽  
Author(s):  
M. A. Gonzalez ◽  
E. Sanz ◽  
C. McBride ◽  
J. L. F. Abascal ◽  
C. Vega ◽  
...  

1993 ◽  
Vol 319 ◽  
Author(s):  
T.K. Chaki

AbstractA model is presented to explain various aspects of diffusion-induced grain boundary migration (DIGM). The driving energies of DIGM are identified as the free energy of mixing and the interface free energy, the former being predominant in most cases of DIGM. The grain boundary migrates due to thermally activated motion of atoms across the interface under the influence of the driving energies. An expression for the velocity of migration is derived. It is shown that this depends parabolically on the solute concentration, in agreement with experimental observations in the case of liquid film migration (LFM), which is analogous to DIGM. Furthermore, the velocity is proportional to lattice diffusivity ahead of the boundary. Recent results of enhancement of DIGM by ion bombardment is explained by radiation-enhanced lattice diffusivity due to introduction of point defects by the ions. The model also explains that diffusion-induced recrystallization (DIR) is due to a free energy decrease associated with the transformation from the amorphous phase in the grain boundary layer to the crystalline phase.


Sign in / Sign up

Export Citation Format

Share Document