Diffusion-Induced Grain Boundary Migration and Role of Defects

1993 ◽  
Vol 319 ◽  
Author(s):  
T.K. Chaki

AbstractA model is presented to explain various aspects of diffusion-induced grain boundary migration (DIGM). The driving energies of DIGM are identified as the free energy of mixing and the interface free energy, the former being predominant in most cases of DIGM. The grain boundary migrates due to thermally activated motion of atoms across the interface under the influence of the driving energies. An expression for the velocity of migration is derived. It is shown that this depends parabolically on the solute concentration, in agreement with experimental observations in the case of liquid film migration (LFM), which is analogous to DIGM. Furthermore, the velocity is proportional to lattice diffusivity ahead of the boundary. Recent results of enhancement of DIGM by ion bombardment is explained by radiation-enhanced lattice diffusivity due to introduction of point defects by the ions. The model also explains that diffusion-induced recrystallization (DIR) is due to a free energy decrease associated with the transformation from the amorphous phase in the grain boundary layer to the crystalline phase.

1991 ◽  
Vol 229 ◽  
Author(s):  
A. H. King

AbstractWe present a review of systematic studies of diffusion induced grain boundary migration (DIGM). The results are compared with structural models for the grain boundaries in order to assess the effects of structure upon DIGM. The nucleation of DIGM is also assessed in the light of grain boundary structure and it is demonstrated that changes of grain boundary solute concentration can induce large enough energy changes to drive novel grain boundary dissociation reactions.


2013 ◽  
Vol 753 ◽  
pp. 131-134
Author(s):  
Yan Huang

Solute drag theory is critically revisited and an alternative approach is presented to account for the effect of solute elements on grain boundary migration during annealing. A fundamental new concept is introduced in the model that, in the linear range of irreversible thermodynamics, solute atoms segregated in a grain boundary will not lag behind when the boundary migrates. While lagging behind is the very essential assumption for the solute drag theory. Instead of blaming the lagging behind, the mobility drop due to solute addition is attributed to the decrease in boundary energy as a result of boundary segregation. According to this model, grain boundary mobility is dependent on solute concentration rather than migration rate. The predictions of the model are compared with experimental results, with a good agreement.


Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Sign in / Sign up

Export Citation Format

Share Document