Practical Nanomaterials and Nanostructures in Electronics

2005 ◽  
Vol 900 ◽  
Author(s):  
Alan Rae

ABSTRACTA quiet revolution is occurring in electronics where nanometals have the ability to revolutionize adhesives and solders, nano oxides are revolutionizing fuel cell efficiency, and nanowires as well as nanotubes have the potential both to enhance short term evolutionary and long term revolutionary improvement.This paper outlines some roadmap predictions and picks three areas with concrete examples- nano metals for ink jet formation of circuits, nano oxides in fuel cells, and lithographically developed nanowires for sensor application and details technical and commercial progress.

2017 ◽  
Vol 10 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Mohammed Jourdani ◽  
Hamid Mounir ◽  
Abdellatif El Marjani

Background: During last few years, the proton exchange membrane fuel cells (PEMFCs) underwent a huge development. Method: The different contributions to the design, the material of all components and the efficiencies are analyzed. Result: Many technical advances are introduced to increase the PEMFC fuel cell efficiency and lifetime for transportation, stationary and portable utilization. Conclusion: By the last years, the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.This paper gives an overview of the recent advancements in the development of Proton Exchange Membrane Fuel cells and remaining challenges of PEMFC.


Author(s):  
S. H. Chan ◽  
G. B. Jung ◽  
F. B. Weng ◽  
A. Su

Fuel cells provide a clean and efficient alternative fuel technology for transportation, residential and portable power applications. From political, social, economic, energy, environmental and technological considerations, the emerging fuel cell technology is undoubtedly well worthy of long-term investment in Taiwan. In view of the success and manufacture capability of electronics and IT industries, Taiwan may play an active role in fuel cell manufacturing and is thus conducive for international strategic alliance, both in R&D and manufacturing activities. This article provides an overview of Taiwan’s technological activities and accomplishments in fuel cells, and makes recommendations for the country’s future development and commercialization of fuel cell applications.


Solar Energy ◽  
2002 ◽  
Author(s):  
Andy Walker ◽  
Jim Christensen ◽  
Greg Barker ◽  
Lyle Rawlings

This paper reports short-term performance measurement of a hybrid photovoltaic/fuel cell power supply system at Kirby Cove Campground in Golden Gate National Recreation Area, California. The system operated reliably for two years from June 1999 to July 2001. During this period, the campground host load was met with a combination of solar power and power from the fuel cell. In August of 2001, reports of power outages justified an in-depth investigation. Data is reported over 13.5 days from September 2 to September 15, 2001. Over this period, energy delivered by the photovoltaic array totaled 42.82 kWh. Energy delivered by the fuel cell totaled 1.34 kWh, and net (out-in) energy from the battery totaled 6.82 kWh. After losses in the battery and inverter, energy delivered to the campground host totaled 34.94 kWh, an average of 2.6 kWh/day. Photovoltaic efficiency was measured at 8.9%. Fuel cell efficiency was measured at 42%, which is a typical value, but fuel cell power output was only 35 W instead of the 250 W rated power. Replacing a burnt fuse restored fuel cell power to 125 W, but several cells measured low voltage, and the fuel cell was removed for repair or replacement. Ordinarily, load in excess of the PV capability would be met by the fuel cell, and 22 cylinders of H2 (261 scf, 7,386 sl each) were consumed from April to August 2001. After failure of the fuel cell, load in excess of the solar capability resulted in discharged batteries and eight power outages totaling 48 hours in duration. Thus, overall system availability was 85% when relying only on solar power. This paper describes daily system operation in detail, presents component performance indicators, identifies causes of performance degradation, and provides recommendations for improvement.


Author(s):  
Eva Novillo ◽  
Mo´nica Pardo ◽  
Alberto Garci´a-Luis

Reduced greenhouse gas emissions via improved energy efficiency represents the ultimate challenge for the energy economy of the future. In this context, fuel cells for power generation aboard aircrafts have a promising potential to effectively contribute to the greening of air transportation. They can simplify today’s aircraft comprising electric, pneumatic and hydraulic systems towards a more electric airplane. Although they are not considered in the short term as an alternative propulsion system for commercial aviation, many efforts are being devoted to their use as auxiliary power units and even aiming to build a distributed power network that might alleviate duties of the engine driven generators. In addition they allow new functions as zero emission during taxiing on ground and /or increase safety by replacing the emergency ram air turbine (RAT) by a fuel cell based emergency power generator. The present paper focuses on the effort that Compan˜i´a Espan˜ola de Sistemas Aerona´uticos (CESA) is putting into the development of an aeronautical fuel cell system based on a high temperature PEMFC covering all aspects from fundamental research in materials & processes to final integration concepts as a function of different architectures. A great deal of time and effort has been invested to overcome the challenges of PEM fuel cell operation at high temperatures. Among the advantages of these systems are the enhancement of electrochemical kinetics, simplification of water management and cooling, recovery of wasted heat and the possibility of utilizing reformed hydrogen thanks to higher tolerance to impurities. However, new problems arise with the high temperature concept that must be addressed like structural and chemical degradation of materials at elevated temperatures. One of the aeronautical applications where a fuel cell has an important role to play in the short term is the emergency power unit. Weight and mechanical complexity of traditional ram air turbines could be drastically reduced by the introduction of a hydrogen fueled system. In addition, the output of the fuel cell is aircraft’s speed independent. This means additional power supply in case of emergency allowing a safer landing of the aircraft. However, a RAT replacement must overcome the specific difficulties concerning the very short start-up times allowed and the heating/cooling strategies to quickly raise the temperature to elevated levels and accurately maintaining the optimum operating range once in service.


Author(s):  
Eduardo Velasco ◽  
Eduardo Rinco´n

H2 is considered the main contributor to accelerate the introduction of renewable energies (REs) however electricity is by no means the only efficient path to generate H2. Battery and fuel cell complement each other, pure battery car will not be the general solution for our future mobility needs, but the fuel cell on the other hand cannot perform well without a battery. Hybrid electric vehicles (HEVs) have the potential to meet short-term stringent regulations as well as fuel economy (FE) and CO2 goals, and can therefore be considered as the first step forward into global sustainable mobility (GSM) vision. In addition, efficient use of energy and fuel diversity is destined to emerge in the near future, allowing significant use of RE sources in the transportation sector. I will briefly discuss an analysis and simulation of the future vehicle propulsion systems (FVPSs) to meet a potential GSM vision as a long-term thinking that might produce better short-term decisions.


2020 ◽  
Vol 160 ◽  
pp. 01002 ◽  
Author(s):  
T Hickmann ◽  
O Zielinski

Graphite composites based bipolar plates are a preferred material for stationary PEM fuel cell applications, because they are resistant against high temperatures and corrosive conditions. This chapter gives an overview about different material configurations as well as the most important parameters and characterization methods for graphite based bipolar plates. It describes the actual generation PPS based composite materials with improved long-term stability. It introduces the most common materials and gives an overview about interactions between other stack components, characterization and processing, great care should be taken in constructing the bipolar plates.


Author(s):  
Eva Novillo ◽  
Mónica Pardo ◽  
Alberto García-Luis

Reduced greenhouse gas emissions via improved energy efficiency represent the ultimate challenge for the energy economy of the future. In this context, fuel cells for power generation aboard aircrafts have a promising potential to effectively contribute to the greening of air transportation. They can simplify today’s aircraft comprising electric, pneumatic, and hydraulic systems toward a more electric airplane. Although they are not considered in the short term as an alternative propulsion system for commercial aviation, many efforts are being devoted to their use as auxiliary power units and even aiming to build a distributed power network that might alleviate duties of the engine driven generators. In addition they allow new functions such as zero emission during taxiing on ground and/or increase safety by replacing the emergency ram-air turbine (RAT) by a fuel cell based emergency power generator. The present paper focuses on the effort that Compañía Española de Sistemas Aeronáuticos (CESA) is putting into the development of an aeronautical fuel cell system based on a high-temperature PEMFC covering all aspects from fundamental research in materials and processes to final integration concepts as a function of different architectures. A great deal of time and effort has been invested to overcome the challenges of PEM fuel cell operation at high temperatures. Among the advantages of these systems are the enhancement of electrochemical kinetics, the simplification of water management and cooling, the recovery of wasted heat, and the possibility of utilizing reformed hydrogen thanks to higher tolerance to impurities. However, new problems arise with the high-temperature concept that must be addressed such as structural and chemical degradation of materials at elevated temperatures. One of the aeronautical applications, where a fuel cell has an important role to play in the short term is the emergency power unit. Weight and mechanical complexity of traditional ram-air turbines could be drastically reduced by the introduction of a hydrogen fueled system. In addition, the output of the fuel cell is aircraft’s speed independent. This means additional power supply in case of emergency allowing a safer landing of the aircraft. However, a RAT replacement must overcome the specific difficulties concerning the very short start-up times allowed and the heating/cooling strategies to quickly raise the temperature to elevated levels and accurately maintaining the optimum operating range once in service.


2009 ◽  
Vol 156 (3) ◽  
pp. A181 ◽  
Author(s):  
Jun Maruyama ◽  
Masatoshi Umemura ◽  
Minoru Inaba ◽  
Akimasa Tasaka ◽  
Ikuo Abe

Sign in / Sign up

Export Citation Format

Share Document