InAs and InP Quantum Dot Molecules and their Potentials for Photovoltaic Applications

2006 ◽  
Vol 959 ◽  
Author(s):  
Wipakorn Jevasuwan ◽  
Supachok Thainoi ◽  
Songphol Kanjanachuchai ◽  
Somchai Ratanathammaphan ◽  
Somsak Panyakeow

ABSTRACTSelf-assembled InAs and InP quantum dot molecules (QDMs) are grown on GaAs substrates using different molecular beam epitaxial (MBE) growth techniques. The structural and optical properties of the two types of QDMs are then compared and reported. Multi-stack high-density (1012 cm-2) InAs QDMs are grown and when inserted into GaAlAs/GaAs heterostructure results in high-efficiency solar cells. As an alternative to InAs, InP QDMs are grown by droplet epitaxy of In and annealing under P2 pressure. While the number of quantum dots per QDM in the case of InP is in the range of 10 to 12 dots, those in the case of InAs can be smaller or much larger depending on exact growth parameters prior to QD growth. Photoluminescence (PL) measurements show that while InAs QDMs provide room-temperature optical output that peaks at 1.1 eV, InP QDMs have no PL output, possibly due to crystal defects created by low-temperature processing associated with droplet epitaxy. Discussion on the practicality of our QDMs as material for intermediate band solar cells is also provided.

2014 ◽  
pp. 406-429
Author(s):  
Yoshitaka Okada ◽  
Katsuhisa Yoshida ◽  
Yasushi Shoji

Advanced concepts for high efficiency solar cells such as hot carrier effects, Multi-Exciton Generation (MEG), and Intermediate-Band (IB) absorption in low-dimensional nanostructures are under focused research topics in recent years. Among various potential approaches, this chapter is devoted to the device physics and development of the state-of-the-art technologies for quantum dot-based IB solar cells.


Author(s):  
Yoshitaka Okada ◽  
Katsuhisa Yoshida ◽  
Yasushi Shoji

Advanced concepts for high efficiency solar cells such as hot carrier effects, Multi-Exciton Generation (MEG), and Intermediate-Band (IB) absorption in low-dimensional nanostructures are under focused research topics in recent years. Among various potential approaches, this chapter is devoted to the device physics and development of the state-of-the-art technologies for quantum dot-based IB solar cells.


2018 ◽  
Vol 9 ◽  
pp. 432-439 ◽  
Author(s):  
Injamam Ul Islam Chowdhury ◽  
Jith Sarker ◽  
A.S.M. Zadid Shifat ◽  
Rezoan A. Shuvro ◽  
Abu Farzan Mitul

2012 ◽  
Vol 26 (14) ◽  
pp. 1250090 ◽  
Author(s):  
N. E. GORJI ◽  
M. HOUSHMAND ◽  
S. S. DEHKORDI

The parameter electron filling factor can be taken as a scale for the electronic states in the intermediate band which should be de-localized and thus the unconfined electrons at the quantum dots. For three different value of electron filling factor, the sunlight concentration effect on the efficiency of a quantum dot solar cell is calculated. The maximum point of efficiency and optimum thickness of the cell obtained under three different sunlight concentrations. We show the importance of electron filling factor as a parameter to be more considered. This parameter can be controlled by the quantum dots size and distance between quantum dot layers in the active region. Analysis of above mentioned parameters suggest that to attain a maximum efficiency, the size of the quantum dots and the distance between the periodically arrayed dot layers have to be optimized. In addition, sunlight concentration is recommended as an effective approach to have high efficiency and low cost level solar cells.


Sign in / Sign up

Export Citation Format

Share Document