Temperature Dependence of Silicon-based Thin Film Solar Cells on Their Intrinsic Absorber

2007 ◽  
Vol 989 ◽  
Author(s):  
Kobsak Sriprapha ◽  
Ihsanul Afdi Yunaz ◽  
Shuichi Hiza ◽  
Kun Ho Ahn ◽  
Seung Yeop Myong ◽  
...  

AbstractThe temperature dependence of Si-based thin-film single junction solar cells on the phase of the intrinsic absorber is investigated in order to find the optimal absorber at high operating temperatures. For comparison, hydrogenated amorphous, protocrystalline, and microcrystalline silicon solar cells are fabricated by plasma-enhanced chemical vapor deposition and hot-wired CVD techniques. Photo J-V characteristics are measured using a solar simulator at the ambient temperature range of 25-85°C. It is found that the cells with a higher open-circuit voltage usually show lower temperature-dependent behaviors; the protocrystalline silicon solar cells provide the lowest temperature coefficient of efficiency, while the microcrystalline silicon solar cells are highly sensitive to the temperature. Therefore, protocrystalline silicon solar cells are promising for use in high temperature regions.

2015 ◽  
Vol 212 (4) ◽  
pp. 840-845 ◽  
Author(s):  
Simon Hänni ◽  
Mathieu Boccard ◽  
Grégory Bugnon ◽  
Matthieu Despeisse ◽  
Jan-Willem Schüttauf ◽  
...  

2004 ◽  
Vol 451-452 ◽  
pp. 280-284 ◽  
Author(s):  
M. Lejeune ◽  
W. Beyer ◽  
R. Carius ◽  
J. Müller ◽  
B. Rech

1996 ◽  
Vol 426 ◽  
Author(s):  
Seung Jae Baik ◽  
Jinsoo Song ◽  
Koeng Su Lim

AbstractTo obtain high quality ZnO thin films for use as transparent electrodes of amorphous silicon solar cells, hydrogen treatment of the films using photo-chemical vapor deposition was performed for the first time. The as-deposited ZnO thin film was irradiated by UV light during the flow of hydrogen molecules in the presence of photo-sensitizers of mercury. As the treatment time increased, resistivity decreased from 1 × 10−2Ωcm to 2 × 10−3Ωcm. Moreover, haze ratio increased from 20% to 48%. Hydrogen radicals were thought to be playing various roles on the neighborhood of the surface region and the grain boundary region. This new trial gave us new understanding into the relation between hydrogen and ZnO. Moreover, these results could be applied to the process of amorphous silicon solar cells and a possible increase of efficiency is expected.


2000 ◽  
Vol 609 ◽  
Author(s):  
T. Brammer ◽  
H. Stiebig ◽  
A. Lambertz ◽  
W. Reetz ◽  
H. Wagner

ABSTRACTThe optoelectronic behavior of diodes deposited by plasma enhanced chemical vapor deposition was investigated for a series of different silane concentrations in the gas phase. The purpose of this work was to correlate device characteristics with inherent properties of microcrystalline silicon by experiments and numerical simulations. Dark diode characteristics and, therefore, the open circuit voltage behavior of this series were dominated by the bulk properties of the i-layer (equilibrium carrier concentration) as shown by numerical modeling. Measurement of the solar cell output parameters as a function of the temperature showed that the fill factor of solar cells with small silane concentrations is dominated by the dark diode characteristics. This is in contrast to the temperature dependent fill factor of solar cells with large silane concentration which is limited by the extraction efficiency of the photogenerated carriers. Interface effects dominated the temperature dependent blue response. The gain in blue response increased with temperature and silane concentration by up to 200 % which revealed transport limiting material properties in the vicinity of the p/i-interface. This behavior was attributed to the nucleation region.


Sign in / Sign up

Export Citation Format

Share Document