Characterization of Gap Defect States in Hydrogenated Amorphous Silicon Materials

2008 ◽  
Vol 1066 ◽  
Author(s):  
Lihong Jiao ◽  
C. R. Wronski

ABSTRACTAn enhanced simulation model based on the carrier recombination through these states was developed to characterize the gap defect states in hydrogenated amorphous silicon materials (a-Si:H). The energy dependent density of electron occupied gap states, kN(E), was derived directly from Dual Beam Photoconductivity (DBP) measurements at different bias currents. Through Gaussian de-convolution of kN(E), the energy peaks of the multiple defect states, including both neutral and charged states, were obtained. These energy levels, together with the information on the capture cross sections, were used as known input parameters to self-consistently fit the subgap absorption spectra, the electron mobility-lifetime products over a wide range of generation rates, as well as the energy dependent density of electron occupied gap state spectra. Accurate gap state information was obtained and the nature of the defect states was studied. Simulation results on light degraded hydrogen diluted, protocrystalline a-Si:H show that the density of charged states is 2.3 times that of neutral states. The two states close to the midgap act as effective recombination centers at low generation rates and play key roles in photoconductivity studies.

1993 ◽  
Vol 297 ◽  
Author(s):  
Nobuhiro Hata ◽  
Gautam Ganguly ◽  
Akihisa Matsuda

Measurements of the steady-state defect density (Nst) in hydrogenated amorphous silicon under illumination of pulse-laser light, as well as of continuous light, were carried out; and the dependence of Nst on the effective rate of carrier generation (G) is presented. The values of G ranged from 8 x 1021 to 2.4 × 1023 cm-3 s-1, while the illumination temperature was kept at 30 °C or at 105 °C. The results showed trends of Nst increasing with G similarly to the trends in the literature, but covered a higher and wider G range, and fitted a defect model which assumes a limited number of possible defect states.


1993 ◽  
Vol 297 ◽  
Author(s):  
Jong-Hwan Yoon

Intrinsic deep defect-related recombination process has been studied in a series of undoped hydrogenated amorphous silicon(a-Si:H) films grown under different deposition conditions. Steady-state photoconductivity (σph) was measured as a function of deep defect density Nd, Urbach energy Eu, and dark Fermi energy Ef. It was found that σph strongly depends on these parameters while Ef- stays at the energy levels lower than 0.82 eV below Ec, but it is nearly independent of those while Ef stays at above 0.82 eV. These behaviors were found to be independent of the sample deposition conditions. These results indicates that subgap defect states enclosed by E=0.82 eV and Ef are the dominant recombination centers.


2006 ◽  
Vol 73 (8) ◽  
Author(s):  
P. Roura ◽  
J. Farjas ◽  
Chandana Rath ◽  
J. Serra-Miralles ◽  
E. Bertran ◽  
...  

2011 ◽  
Vol 1321 ◽  
Author(s):  
Bin Cai ◽  
D. A. Drabold

ABSTRACTIn a-Si:H, large concentrations of B or P (of order 1%) are required to dope the material, suggesting that doping mechanisms are very different than for the crystal for which much smaller concentrations are required. In this paper, we report simulations on B and P introduced into realistic models of a-Si:H and a-Si, with concentrations ranging from 1.6% to 12.5% of B or P in the amorphous host. The results indicate that tetrahedral B and P are effective doping configurations in a-Si, but high impurity concentrations introduce many defect states. For a-Si:H, we report that both B(3,1) and P(3,1) (B or P atom bonded with three Si atoms and one H atom) are effective doping configurations. We investigate H passivation in both cases. For both B and P, there exists a “hydrogen poison range” of order 6 Å for which H in a bond-center site can suppress doping. For B doping, nearby H prefers to stay at the bond-center of Si-Si, leaves B four-fold and neutralizes the doping configuration; for P doping, nearby H spoils the doping by inducing a reconstruction rendering initially tetrahedral P three-fold.


1991 ◽  
Vol 219 ◽  
Author(s):  
Gaorong Han ◽  
Jianmin Qiao ◽  
Piyi Du ◽  
Zhonghua Jiang ◽  
Zishang Ding

ABSTRACTWe have presented ESR and PAS measurements for a series of a-SiS:H and a-Si: H films deposited by glow discharge at different parameters. The spin density in a-SiS:H alloys measured by ESR is essentially independent of the sulphur content, while the density of defects measured by PAS increases significantly with the increasing of sulphur content. The ESR signals in a-SiS:H alloys strongly depend on both annealing and illumination. The spin density increases up to 540°C and then decreases with raising annealing temperature for a-SiS:H and a-Si:H alloys. The results suggest that some new defects such as molecular hydrogen and microvoids are appeared when addition of sulphur to a-Si:H films.


1994 ◽  
Vol 76 (4) ◽  
pp. 2260-2263 ◽  
Author(s):  
Mehmet Güneş ◽  
Christopher R. Wronski ◽  
T. J. McMahon

Sign in / Sign up

Export Citation Format

Share Document