Processing and Characterization of Efficient Thin-Film Polycrystalline-Silicon Solar Cells

2008 ◽  
Vol 1101 ◽  
Author(s):  
Ivan Gordon ◽  
Dries Van Gestel ◽  
Yu Qiu ◽  
Srisaran Venkatachalam ◽  
Guy Beaucarne ◽  
...  

AbstractEfficient thin-film polycrystalline-silicon (pc-Si) solar cells on inexpensive substrates could substantially lower the price of photovoltaic electricity. We recently showed that good solar cells can be made from pc-Si obtained by epitaxial thickening using thermal CVD of a seed layer made by aluminium-induced crystallization (AIC) of amorphous silicon. We already reported cells in substrate configuration with energy conversion efficiencies up to 8.0% for layers on ceramic alumina substrates. However, much higher efficiencies (η > 10%) are needed for this type of pc-Si solar cells to become cost-effective. To achieve these higher efficiencies, cells will probably have to be made in a superstrate configuration on transparent substrates and advanced light trapping will need to be applied. In this paper we report on our recent progress with pc-Si solar cells made on transparent glass-ceramic substrates.So far, our best pc-Si solar cells in substrate configuration on glass-ceramics showed an efficiency of 6.4%. By using plasma texturing to lower the front side reflection, we increased the current density of our cells by roughly 1 mA cm-2. The Jsc is much lower for cells on glass-ceramic than for cells on alumina. This is the result of the better diffuse back reflectance of alumina compared to glass. The Voc and fill factor are comparable for cells on both substrates.To make pc-Si solar cells on glass in superstrate configuration, we will use a-Si/c-Si rear junction emitters. As a first test of the feasibility of this approach, we measured the illuminated IV parameters of pc-Si cells made for the substrate configuration in superstrate configuration. In superstrate configuration, the current density of the cells is much lower than in substrate configuration due to the non-optimized cell design for superstrate illumination. The Voc is slightly smaller in superstrate configuration due to the lower current density.These results indicate that the glass-ceramic substrates are fully compatible to our poly-Si solar cell process. Furthermore, rear-junction poly-Si cells in superstrate configuration should lead to good cell results once the absorber layer thickness is optimized to the diffusion length of the material and light trapping features adapted to the superstrate configuration are applied.

2007 ◽  
Vol 989 ◽  
Author(s):  
Ivan Gordon ◽  
Lode Carnel ◽  
Dries Van Gestel ◽  
Guy Beaucarne ◽  
Jef Poortmans

AbstractEfficient thin-film polycrystalline-silicon (pc-Si) solar cells on inexpensive substrates could lower the price of photovoltaic electricity substantially. At the MRS conference in 2006, we presented a pc-Si solar cell with an efficiency of 5.9% that had an absorber layer made by aluminum-induced crystallization (AIC) of amorphous silicon followed by high-temperature epitaxial thickening. The efficiency of this cell was mainly limited by the current density. To obtain higher efficiencies, we therefore need to implement an effective light trapping scheme in our pc-Si solar cell process. In this work, we describe how we recently enhanced the current density and efficiency of our cells. We achieved a cell efficiency of 8.0% for pc-Si cells in substrate configuration. Our cell process is based on pc-Si layers made by AIC and thermal CVD on smoothened alumina substrates. The cells are in substrate configuration with deposited a-Si heterojunction emitters and interdigitated top contacts. The front surface of the cells is plasma textured which leads to an increase in current density. The current density is further enhanced by minimizing the back surface field thickness of the cells to reduce the light loss in this layer. Our present pc-Si solar cell efficiency together with the fast progression that we have made over the last few years indicate the large potential of pc-Si solar cells based on the AIC seed layer approach.


2010 ◽  
Vol 94 (2) ◽  
pp. 381-385 ◽  
Author(s):  
I. Gordon ◽  
S. Vallon ◽  
A. Mayolet ◽  
G. Beaucarne ◽  
J. Poortmans

2006 ◽  
Vol 910 ◽  
Author(s):  
Ivan Gordon ◽  
Dries Van Gestel ◽  
Lode Carnel ◽  
Kris Van Nieuwenhuysen ◽  
Guy Beaucarne ◽  
...  

AbstractA considerable cost reduction could be achieved in photovoltaics if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) layers. Aluminum-induced crystallization (AIC) of amorphous silicon followed by epitaxial thickening is an effective way to obtain large-grained pc-Si layers with excellent properties for solar cells. To obtain efficient solar cells, the electronic quality of the pc-Si material obtained by AIC has to be optimized and the cell design has to be adapted to the material. In this paper, we report on pc-Si solar cells made by AIC in combination with thermal CVD on ceramic alumina substrates. We made pc-Si solar cells on alumina substrates that showed Voc values up to 533 mV and efficiencies up to 5.9%. This is the highest efficiency ever achieved with pc-Si solar cells on ceramic substrates where no (re)melting of silicon was used. We demonstrate that the quality of the pc-Si material can be improved drastically by reducing the substrate roughness using spin-on oxides. We further show that a-Si/c-Si heterojunctions lead to much higher Voc values than diffused homojunctions. A cell concept that incorporates spin-on oxides and heterojunction emitters is therefore best suited to obtain efficient pc-Si solar cells on alumina substrates.


2014 ◽  
Vol 122 ◽  
pp. 146-151 ◽  
Author(s):  
Ying Huang ◽  
Nasim Sahraei ◽  
Per I. Widenborg ◽  
Ian Marius Peters ◽  
Goutam Kumar Dalapati ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 497-502
Author(s):  
Wei Ping Chu ◽  
Fuh Shyang Juang ◽  
Jian Shian Lin ◽  
Tien Chai Lin ◽  
Chen Wei Kuo

We utilize photonic crystals to enhanced lighttrapping in a-Si:H thin film solar cells. The photonic crystals effectively increase Haze ratio of glass and decrease reflectance of a-Si:H solar cells. Therefore, increase the photon path length to obtain maximum absorption of the absorber layer. The photonic crystals can effective in harvesting weakly absorbing photons with energies just above the band edge. We were spin coated UV glue on the glass, and then nanoimprint of photonic crystals pattern. Finally, used UV lamp was curing of UV glue on the glass. When the 45∘composite photonic crystals structures, the haze was increase to 87.9 %, resulting the short circuit current density and efficiency increasing to 13.96 mA/cm2 and 7.39 %, respectively. Because 45∘composite photonic crystals easy to focus on the point of light lead to the effect of scattering can’t achieve. So, we designs 90∘V-shaped photonic crystals structures to increase scattering. When the 90∘V-shaped photonic crystals structures, the Haze was increase to 93.9 %. Therefore, the short circuit current density and Efficiency increasing to 15.62 mA/cm2 and 8.09 %, respectively. We observed ~35 % enhancement of the short-circuit current density and ~31 % enhancement of the conversion efficiency.


2015 ◽  
Vol 24 (4) ◽  
pp. 040202 ◽  
Author(s):  
Le Chen ◽  
Qing-Kang Wang ◽  
Pei-Hua Wangyang ◽  
Kun Huang ◽  
Xiang-Qian Shen

2012 ◽  
Vol 51 (4R) ◽  
pp. 042302 ◽  
Author(s):  
Hidenori Mizuno ◽  
Hitoshi Sai ◽  
Koji Matsubara ◽  
Michio Kondo

2006 ◽  
Vol 910 ◽  
Author(s):  
Dries Van Gestel ◽  
Ivan Gordon ◽  
Lode Carnel ◽  
Linda R. Pinckney ◽  
Alexandre Mayolet ◽  
...  

AbstractEfficient thin-film polycrystalline-silicon (pc-Si) solar cells on foreign substrates could lower the price of photovoltaic electricity. Aluminum-induced crystallization (AIC) of amorphous silicon followed by epitaxial thickening at high temperatures seems a good way to obtain efficient pc-Si solar cells. Due to its transparency and low cost, glass is well suited as substrate for pc-Si cells. However, most glass substrates do not withstand temperatures around 1000°C that are needed for high-temperature epitaxial growth. In this paper we investigate the use of experimental transparent glass-ceramics with high strain-point temperatures as substrates for pc-Si solar cells. AIC seed layers made on these substrates showed in-plane grain sizes up to 16 μm. Columnar growth was observed on these seed layers during high-temperature epitaxy. First pc-Si solar cells made on glass-ceramic substrates in substrate configuration showed efficiencies up to 4.5%, fill factors up to 75% and open-circuit voltage (Voc) values up to 536 mV. This is the highest Voc reported for pc-Si solar cells on glass and the best cell efficiency reported for cells made by AIC on glass.


Sign in / Sign up

Export Citation Format

Share Document