Estimate of Hydrogen Density at Starting Point for Crevice Corrosion and Cracking of Cold Rolled Type 304 Stainless Steel

2009 ◽  
Vol 1226 ◽  
Author(s):  
Shunji Kajikawa ◽  
Yasuaki Isobe ◽  
Akio Kuromiya ◽  
Masazumi Okido

AbstractIn the past work of authors, a cold rolled type304 stainless steel pipe with shot peening was prepared. A crevice was created between the outside of the pipe and an O-ring, and the pipe was applied stress by press fitting another part. Cracking from a crevice corrosion pit was observed in a chloride environment, and it was presumed to be Hydrogen Embrittlement-Stress Corrosion Cracking(HE-SCC). Provided that the crack is caused by HE-SCC、it is thought that hydrogen is generated by corrosion reaction and the SUS304 pipe absorbs it more than its critical level. Generally, the hydrogen distribution in the steel is analyzed in the condition that the hydrogen concentration of the environment is constant as the high-pressure hydrogen gas environment etc. In the case of HE-SCC described above, however, the hydrogen concentration is presumed to change with pitting growth, and there is no example of analysis in such condition. In this work, cyclic corrosion tests were conducted using the samples with no press-fitting part. The hydrogen density at the initiation point of crevice corrosion and cracking was estimated by following technique. First, the amount of hydrogen diffused from the corrosion pit was measured using Thermal Desorption Spectroscopy(TDS ), and the number of pits was measured. Then, the average hydrogen quantity in a pit was derived. On the other hand, it is thought that hydrogen is generated by the hydrolysis of a metallic salt and the cathode reaction of the hydrogen ion in the pit. Therefore, the amount of the hydrogen is proportional to the quantity of corrosion amount. Then, assuming that pitting corrosion takes the form of half sphere shape and grows with time, the simulation model was made that the hydrogen absorbed and diffused from the pit surface with the development of corrosion. The profile of the hydrogen density in SUS304 from pit initiation till crack initiation was calculated based on this model. The calculated profile of the hydrogen density was compared with the amount of hydrogen measured by cyclic corrosion test. As a result, the hydrogen concentration at the crack starting point was derived 0.3ppm. At this density level, He-SCC can occur in high strength SUS304.

2009 ◽  
Vol 1226 ◽  
Author(s):  
Shunji Kajikawa ◽  
Yasuaki Isobe ◽  
Masazumi Okido

AbstractThe salt damage such as the snow melting salts in winter or the sea salt particle flying in the coast region has significant effect on the corrosive environment of the automobile. Moreover, the corrosive environment of the automobile become more severe by the wet/dry cyclic condition, for example, a car gets wet with the splash water and dryness by the thermal loading while driving. On the other hand, the further application of the high strength stainless steel to the automobile parts is expected because it can contribute durability and lightening. Then, it is important to clarify the corrosion characteristic of this material under the salt damage environment. In this study cold rolled type304 stainless steel pipe with shot peening were used to investigate the corrosion property of high strength type304 stainless steel for automotive applications in a salt damage environment. The hardness of the pipe was about HV450, and a clear difference was not admitted in the thickness direction. A crevice was created between the outside of the pipe and an O-ring, and the pipe was applied stress by press fitting of another part. The corrosion property of the sample was evaluated in an automotive field test in Okinawa. Cracking from a corrosion pit was observed in the crevice. The Electron Prove Micro Analysis(EPMA) indicated that pitting corrosion was caused by chloride (from sea salt) concentrated in the crevice. The crack occurred in the residual compressive stress layer created by shot peening. In this regard, it was confirmed by the XRD analysis that about 85% of the metallographic structure had been transformed into the martensite. And the observation of the metallographic structure by the Electron Back Scatter Diffraction(EBSD) clarified the crystal grain was greatly transformed by the strong processing. It means that the accumulation of strain occurred. These two factors are considered to raise the receptivity to the crack generation of this sample. A crack generated at a corrosion pit was reproduced in a wet/dry cyclic corrosion test after one flash of artificial seawater. To investigate the crack generating mechanism, a corrosion pit was previously generated on the sample by cyclic corrosion test, after which a cathodic charge test in artificial sea water was done. Similar cracking from a corrosion pit was observed on the sample after this test. Therefore, the cracking is presumed to be Hydrogen Embrittlement-Stress Corrosion Cracking(HE-SCC)


Alloy Digest ◽  
2012 ◽  
Vol 61 (4) ◽  

Abstract Böhler (or Boehler) A911 is a super duplex ferritic-austenitic chromium-nickel-molybdenum stainless steel with excellent resistance to stress-corrosion cracking, pitting, and crevice corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-1119. Producer or source: Böhler-Uddeholm Specialty Metals Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (5) ◽  

Abstract SEA-CURE is a ferritic stainless steel designed to provide high resistance to pitting and crevice corrosion in condensers cooled by saline or brackish water. It is used for condenser tubes and has great potential for many other uses. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-364. Producer or source: Trent Tube.


Alloy Digest ◽  
1994 ◽  
Vol 43 (5) ◽  

Abstract URANUS 52N is a nitrogen-alloyed duplex stainless steel improved in stress-corrosion cracking resistance and with pitting and crevice corrosion resistance better than AISI Type 317L. Applications include handling phosphoric acid contaminated with chlorides and in flue gas desulfurization scrubbers. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-566. Producer or source: Creusot-Marrel.


Alloy Digest ◽  
2006 ◽  
Vol 55 (2) ◽  

Abstract Sandvik 12C27 is a martensitic stainless steel for knife applications. It is supplied in both the annealed or cold-rolled condition. This datasheet provides information on composition, microstructure, hardness, and tensile properties. It also includes information on forming and heat treating. Filing Code: SS-954. Producer or source: Sandvik Steel Company.


Alloy Digest ◽  
2007 ◽  
Vol 56 (7) ◽  

Abstract Boehler A965 is a superaustenitic Cr-Ni-Mo stainless steel with excellent resistance to stress-corrosion cracking, pitting, and crevice corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-994. Producer or source: Böhler-Uddeholm Specialty Metals Inc.


Alloy Digest ◽  
2010 ◽  
Vol 59 (8) ◽  

Abstract NAS 64 is a duplex stainless steel with molybdenum for pitting and crevice corrosion resistance and a duplex microstructure for resistance to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1072. Producer or source: Nippon Yakin Kogyo Company Ltd.


Alloy Digest ◽  
2010 ◽  
Vol 59 (7) ◽  

Abstract NAS 74N is a super duplex stainless steel with very high molybdenum for pitting and crevice corrosion resistance and a duplex microstructure for resistance to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1070. Producer or source: Nippon Yakin Kogyo Company Ltd.


Sign in / Sign up

Export Citation Format

Share Document