corrosion test
Recently Published Documents


TOTAL DOCUMENTS

834
(FIVE YEARS 107)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 704
Author(s):  
Jakub Ramult ◽  
Klaudia Wiśniewska-Tobiasz ◽  
Ryszard Prorok ◽  
Dominika Madej

This study investigated the effect of the CaO/SiO2 mass ratio of steel slag on the corrosion behavior of spinel-forming alumina-based castables with a content of MgO (3–7 wt.%). Equiweight mixtures of castables and slags were calculated by FactSage, observed by HMTA, fired at 1350 °C, and investigated by XRD. From these results, we conclude that the presence of SiO2-rich phases accelerates the growth of the liquid phase in a narrow temperature range for the tested samples, which accelerates the degradation of castables. The static corrosion test was conducted by means of the coating method at 1450 °C. The corrosion index (IC) in the regions of castables affected by slags was calculated. Phases and phase distributions were evaluated by SEM-EDS. From these results, we conclude that for the slag with the lowest mass ratio of CaO/SiO2 (1.1), the reaction zone occurs only below the slag-refractory interface, which indicates the aggressive character of this slag.


2022 ◽  
Vol 905 ◽  
pp. 56-60
Author(s):  
Ya Ya Zheng ◽  
Tao Long ◽  
Bing Li

The effects of Mg/Si ratio on precipitation behaviour and properties of Al-Mg-Si alloys were studied by using electrochemical test, corrosion test and transmission electron microscope (TEM). The results show that with the increases of Mg/Si ratio from 0.9 to 1.1, the density of the β" decreases, and the mechanical properties decrease. When the ratio of Mg/Si increases from 1.0 to 1.1, the density y of β" does not increase significantly, but the continuous degree of the MgSi phase decreases significantly. The source of cracks originate from MgSi phase, which reduces the mechanical properties. When the Mg/Si ratio is 0.9, the alloy is in an over-Si state, which results in serious intergranular corrosion (IGC).


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Cheng Zhang ◽  
Cheng Peng ◽  
Jin Huang ◽  
Yanchun Zhao ◽  
Tingzhuang Han ◽  
...  

The effect of Ca on the microstructure and corrosion behavior of a single-phase Mg–Sc alloy was investigated. The microstructure was characterized by optical microscopy and scanning electron microscopy. Corrosion behavior was measured by hydrogen evolution tests and electrochemical measurements. With the addition of microalloyed Ca, the grain size of Mg-0.3Sc alloy is refined and the Mg2Ca phase particle is precipitated. The corrosion test results reveal that the addition of microalloyed Ca is beneficial to the corrosion resistance of Mg-0.3Sc single-phase alloy, which is related to the grain refinement and the protective performance of the corrosion product film. As the content of Ca increases, the corrosion resistance of the alloy first increases and then decreases, which is mainly related to the microstructure of the alloy.


2021 ◽  
Vol 5 (1) ◽  
pp. 87
Author(s):  
Carlo Burkhardt ◽  
Antje Lehmann ◽  
Peter Fleissner ◽  
Laura Grau ◽  
Mirko Trautz ◽  
...  

Various anti-corrosion coatings used on commercially available NdFeB-type magnets were comparatively examined for their durability and suitability for magnet reprocessing by hydrogen-assisted recycling (HPMS). Layer thickness and structure were determined by systematic microstructural analysis, and a standardized corrosion test was used to assess the durability of each layer. Chemical composition of the coatings was analyzed using SEM/EDS and ICP-OES. HPMS behavior was investigated using in situ video monitoring. The results of the presented investigations are an important contribution for the implementation of a sorting and labeling system to support and facilitate a commercially viable recycling of permanent magnets on an industrial scale.


2021 ◽  
Vol 68 (5) ◽  
pp. 41-49
Author(s):  
Dirk Hilmert ◽  
Kevin Krüger ◽  
Jian Song

In this study a comparison between the wear patterns of electrical connectors resulting from two different test types, namely fretting corrosion test and vibration test, is conducted. In both tests, the excitation directions include the mating direction as well as the orthogonal directions corresponding to the mating direction. Different measurement techniques are used to identify similarities and differences between the wear resulting from these test types. The results show fundamentally different critical directions with regard to wear for the respective test types. Furthermore, it is shown that the induced movement of the fretting tests lead to a higher degree of wear than the vibration tests. Also, it is not adequately possible to establish a direct relationship between the induced movement and the excitation amplitude caused by the attached wires since there is a superposition of several movements in the case of real applications.


2021 ◽  
Vol 5 (1) ◽  
pp. 72
Author(s):  
Sofia Tsouli ◽  
Angeliki G. Lekatou ◽  
Spyridon Kleftakis ◽  
Pantelis Gkoutzos ◽  
Ilias K. Tragazikis ◽  
...  

The objective of this effort is to study the effect that the combination of fly ash (FA) with a liquid corrosion inhibitor has on the mechanical degradation of 316L rebars embedded in concrete specimens during salt fog testing for a period of four months, as well as the porosity of concrete. Partial replacement of Ordinary Portland Cement (OPC) by FA (0–25%) did not significantly affect the tensile properties of 316L except a small decrease in the elastic modulus and % elongation with FA increasing. Both FA and FA-liquid inhibitor combination resulted in significant reductions in the porosity of the reinforced concrete after 4 m of salt fog testing.


Sign in / Sign up

Export Citation Format

Share Document