salt damage
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Ji ◽  
Xiaohui Wang ◽  
Xin Song ◽  
Qisheng Zhou ◽  
Chaohui Li ◽  
...  

Plant growth-promoting bacteria (PGPB) can effectively reduce salt damage in plants. Currently, there are many studies on the effects of PGPB on the microbial community structure of rhizosphere soil under salt stress, but fewer studies on the community structure of endophytic bacteria and fungi. We propose that inoculation of endophytic bacteria into the rhizosphere of plants can significantly affect the microbial community structure of the plant’s above-ground and underground parts, which may be the cause of the plant’s “Induced Systemic Tolerance.” The isolated endophytes were re-inoculated into the rhizosphere under salinity stress. We found that, compared with the control group, inoculation with endophytic Bacillus velezensis JC-K3 not only increased the accumulation of wheat biomass, but also increased the content of soluble sugar and chlorophyll in wheat, and reduced the absorption of Na in wheat shoots and leaves. The abundance of bacterial communities in shoots and leaves increased and the abundance of fungal communities decreased after inoculation with JC-K3. The fungal community richness of wheat rhizosphere soil was significantly increased. The diversity of bacterial communities in shoots and leaves increased, and the richness of fungal communities decreased. JC-K3 strain improved wheat’s biomass accumulation ability, osmotic adjustment ability, and ion selective absorption ability. In addition, JC-K3 significantly altered the diversity and abundance of endophytic and rhizosphere microorganisms in wheat. PGPB can effectively reduce plant salt damage. At present, there are many studies on the effect of PGPB on the microbial community structure in rhizosphere soil under salt stress, but there are few studies on the community structure changes of endophytic bacteria and fungi in plants.


2021 ◽  
Vol 285 ◽  
pp. 110145
Author(s):  
Muhammad Ahsan Altaf ◽  
Rabia Shahid ◽  
Ming-Xun Ren ◽  
Muhammad Mohsin Altaf ◽  
Latif Ullah Khan ◽  
...  

HortScience ◽  
2021 ◽  
pp. 1-9
Author(s):  
Haifeng Xing ◽  
Julie Hershkowitz ◽  
Asmita Paudel ◽  
Youping Sun ◽  
Ji Jhong Chen ◽  
...  

Reclaimed water provides a reliable and economical alternative source of irrigation water for landscape use but may have elevated levels of salts that are detrimental to sensitive landscape plants. Landscape professionals must use salt-tolerant plants in regions where reclaimed water is used. Ornamental grasses are commonly used as landscape plants in the Intermountain West of the United States due to low maintenance input, drought tolerance, and unique texture. Six ornamental grass species, including Acorus gramineus (Japanese rush), Andropogon ternarius (silver bluestem), Calamagrostis ×acutiflora (feather reed grass), Carex morrowii (Japanese sedge), Festuca glauca (blue fescue), and Sporobolus heterolepis (prairie dropseed), were evaluated for salinity tolerance. Plants were irrigated every 4 days with a fertilizer solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control) or with a saline solution at an EC of 5.0 dS·m–1 (EC 5) or 10.0 dS·m–1 (EC 10). At 47 days, most species in EC 5 exhibited good visual quality with averaged visual scores greater than 4.6 (0 = dead, 5 = excellent). In EC 10, most A. gramineus plants died, but C. ×acutiflora, F. glauca, and S. heterolepis had no foliar salt damage. At 95 days, C. ×acutiflora, F. glauca, and S. heterolepis in EC 5 had good visual quality with averaged visual scores greater than 4.5. Acorus gramineus, A. ternarius, and C. morrowii showed foliar salt damage with averaged visual scores of 2.7, 3.2, and 3.4, respectively. In EC 10, A. gramineus died, and other grass species exhibited moderate to severe foliar salt damage, except C. ×acutiflora, which retained good visual quality. Plant height, leaf area, number of tillers, shoot dry weight, and/or gas exchange parameters also decreased depending on plant species, salinity level, and the duration of exposure to salinity stress. In conclusion, A. gramineus was the most salt-sensitive species, whereas C. ×acutiflora was the most salt-tolerant species. Festuca glauca and S. heterolepis were more tolerant to salinity than A. ternarius and C. morrowii. Calamagrostis ×acutiflora, F. glauca, and S. heterolepis appear to be more suitable for landscapes in which reclaimed water is used for irrigation. Plant responses to saline water irrigation in this research could also be applied to landscapes in salt-prone areas and coastal regions with saltwater intrusion into aquifers and landscapes affected by maritime salt spray.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 848
Author(s):  
Xiaodong Wang ◽  
Zhiqian Lan ◽  
Lei Tian ◽  
Jianshe Li ◽  
Guankai Yang ◽  
...  

Salinization is an important soil environmental problem, which severely restricts the sustainable production of cucumbers. Therefore, how to improve the salt tolerance of cucumbers is a global problem. Grafting improves the resistance of crops, and calcium ion (Ca2+) weakens the permeability of the plasma membrane. In this paper, grafting cucumber with NaCl-free treatment was the control treatment (CK). Under salt stress, grafting combined different concentrations of CaCl2 and non-grafted (NG) were considered as treatments. The synergistic effect of grafting and Ca2+ to relieve salt stress on cucumber seedlings was investigated. The results revealed that grafting (G), Ca2+, and their interaction significantly influenced plant growth, osmotic adjustment substances, enzyme activities, and iron distribution. Under salt stress, grafting increased the absorption of potassium ion (K+) and Ca2+ in cucumber stems and leaves, but compared with NG, it significantly reduced the accumulation of Na+ in those parts by 61.58–89.40%. Moreover, supplication suitable Ca2+ content had a similar effect. Supplemental Ca2+ promoted the shoot and root biomass. The 10 mM L−1 Ca2+ had the highest biomass, compared with CK and NG, an increase of 49.95% and 20.47%, respectively; the lowest sodium ion (Na+). The highest Ca2+ accumulation in cucumber stem and leaves was found in 10 mM L−1 Ca2+ treatment. Supplemental Ca2+ increased free proline (Pro) and decreased malondialdehyde (MDA) content during the entire salt stress period. At 11 days, compared with 0 mM L−1 Ca2+ treatment, pro content was increased by 4.70–25.31, and MDA content was decreased by 1.08–4.90 times, respectively. Superoxide dismutase (SOD) activity, relative growth rate of plant height (PH), and stem volume (SV), and K+/Na+ and K+/Ca2+ in cucumber leaves had significantly negative correlations with a salt damage score. The combination of grafting and supplemental 5–20 mM L−1 Ca2+ relieved salt damage to cucumber seedlings. The best synergistic effect was obtained with grafting and 10 mM L−1 Ca2+ treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mattia Bassi ◽  
Enrico Sassoni ◽  
Elisa Franzoni

Salt crystallization is one of the harshest deterioration mechanisms affecting heritage materials, causing impressive decay patterns and the loss of a high thickness of original materials. Although salt damage has been widely investigated in the literature from the theoretical and experimental points of view, the solutions to mitigate this problem are still extremely limited. In the present paper, a new biopolymeric treatment based on chitosan was tested on two kinds of porous limestones widely used in historic architecture, aiming at inhibiting the crystallization of sodium sulphate inside the stone and promoting the formation of salt efflorescence over the surface, rather than harmful subflorescence inside the pore network. The treatment was applied to the bare stone and also after an inorganic pre-treatment based on the formation of hydroxyapatite in the stone. Hydroxyapatite was recently proposed for the consolidation and protection of carbonate stones and here it is expected to provide an effective anchoring layer for the chitosan coating on the pores surface, and also to prevent the calcite washout from the stone and hence the removal of chitosan. The effect of hydroxyapatite alone was also tested, for comparison’s sake. Treated and untreated stone specimens were subjected to two different accelerated salt crystallization tests, one based on crystallization cycles (wetting-drying cycles) and the other one based on continuous capillary absorption of a saline solution (“wick effect”), evaluating the results in terms of weight loss, efflorescence formation, and changes in porosity and mechanical properties. The results showed that all the treatments are compatible with the stones, and the combined treatment (hydroxyapatite + chitosan) is extremely promising for the prevention of salt damage.


2021 ◽  
Vol 151 ◽  
pp. 106037
Author(s):  
Mengjun Jia ◽  
Ling He ◽  
Aizhao Pan ◽  
Xiaoqin Ma ◽  
Shengying Huang ◽  
...  
Keyword(s):  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhigang Meng ◽  
Xuebin Cui ◽  
Gan Qi ◽  
Tingting Shi ◽  
Juan Ma

Owing to salt erosion, the sandstone of Yungang Grottoes has widespread weathering diseases. The soluble salt develops reciprocating crystallization pressure under the action of dry and wet cycles to diminish the sandstone strength. Finally, several pore-like and powder-like weathering phenomena are formed. To explore the change in sandstone strength during this process, the sandstone of Yungang Grottoes was taken as the research object. Herein, the uniaxial compression test, XRD test, and other methods were employed to study the samples under different salt erosion cycles. As the number of salt damage cycles increased, the phenomenon of sand particles on the sandstone surface gradually amplified. The compressive strength, tensile strength, and elastic modulus of sandstone decreased with the increase in erosion cycles. The curve was divided into two stages, and the macroscopic and microscopic damage equations of sandstone after erosion were established. During the entire damage process, erosion damage served as the basis of load damage and was affected by different cycles, impacting the development process of load damage. Through the establishment of numerical simulation meso-parameter evolution equations, the PFC2D particle flow model was used to conduct uniaxial simulation tests, and the simulation results were close to the macroscopic test results. Using the particle flow simulation test parameters under salt erosion, the development of the distribution of “displacement-force chain-crack” was analyzed under different salt erosion cycles. These results further revealed the meso-fracture damage characteristics of the Yungang Grottoes sandstone under the action of salt damage and provided a theoretical basis and a novel method for the protection of Yungang Grottoes against weathering.


Sign in / Sign up

Export Citation Format

Share Document