Capture and Sequestration of Radioactive Iodine

2010 ◽  
Vol 1265 ◽  
Author(s):  
Brian Westphal ◽  
Daniel G. Cummings ◽  
Jeff J. Giglio ◽  
Dennis L. Wahlquist ◽  
Ken J. Bateman ◽  
...  

AbstractTrapping experiments have been performed at the Idaho National Laboratory to assess the performance of AgX sorbent media in capturing volatile iodine during the oxidation of irradiated oxide fuel. The demonstration of iodine release and capture from the used fuel has been accomplished with laboratory-scale equipment in a hot cell environment. Iodine loadings as high as 6 ug/g media have been achieved via chemical adsorption with filter efficiencies in excess of 90%. In addition to iodine, significant quantities of tritium have also been collected on the AgX filter media. Filter media loaded with radioactive iodine has been sequestered in a tin matrix by hot isostatic pressing at 200°C. The placement and encapsulation of the sorbent media was examined by neutron radiography, thus confirming the sequestration of radioactive iodine.

Author(s):  
Dennis Wahlquist ◽  
Ken Bateman ◽  
Tim Malewitz

Battelle Energy Alliance, LLC, has successfully tested a remote welding process to seal radioactive waste containers prior to hot isostatic pressing (HIP). Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP during trials within Idaho National Laboratory (INL) hot cells. For HIP treatment at INL, waste was loaded into a stainless-steel or aluminum canister, which was evacuated, seal welded, and placed in a HIP furnace. HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its stability, thus lowering the cost and risk associated with disposal. Weld integrity must be ensured in order to prevent the spread of contamination during HIP. This paper presents a process for sealing HIP canisters remotely using modified, commercially available equipment. This process includes evacuation, heating, welding, and weld inspection. The process and equipment have proven to reliably seal canisters in continued HIP trials.


2015 ◽  
Vol 69 ◽  
pp. 483-490 ◽  
Author(s):  
Aaron E. Craft ◽  
Daniel M. Wachs ◽  
Maria A. Okuniewski ◽  
David L. Chichester ◽  
Walter J. Williams ◽  
...  

Author(s):  
Ken Bateman ◽  
Dennis Wahlquist ◽  
Tim Malewitz

Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd3 (4,400 m3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1-gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.


Author(s):  
Kenneth J. Bateman ◽  
Richard H. Rigg ◽  
James D. Wiest

Argonne National Laboratory has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in electrometallurgical treatment of spent Experimental Breeder Reactor-II fuel. The ceramic waste process culminated with a hot isostatic pressing operation. This paper reviews the installation and operation of a hot isostatic press in a radioactive environment. Processing conditions for the hot isostatic press are presented for non-irradiated material and irradiated material. Sufficient testing was performed to demonstrate that a hot isostatic press could be used as the final step of the processing of ceramic waste for the electrometallurgical spent fuel treatment process.


Sign in / Sign up

Export Citation Format

Share Document