Irradiation-Induced Grain Growth: Role of Dislocations

1989 ◽  
Vol 157 ◽  
Author(s):  
Charles W. Allen ◽  
Lynn E. Rehn

ABSTRACTExisting theories of irradiation-induced grain growth assume that growth occurs by the boundary migration mechanism commonly observed for thermal growth and that it is only the point defects generated si boundaries during the irradiation which are responsible for boundary migration. In contrast, in situ observations during ion irradiation of Au films at temperatures less than 20 K even have clearly demonstrated that growth occurs both by boundary migration and by grain coalescence. Here we present further evidence for the latter. Furthermore, the substantial defect cluster activity observed during irradiation suggests that dislocations play a significant role in the growth phenomenon. Here, we also demonstrate qualitatively that glide of such dislocations to or “through” a boundary can produce essentially the same effect on boundary position or structure that the original point defects would have had if they had migrated individually to or through the boundary. Via dislocation motion, point defects originating far from a boundary may induce boundary migration or boundary structure change, and hence, grain growth.

Author(s):  
Charles W. Allen

When thin polycrystalline films of Au, Cu and various other materials are subjected to energetic ion irradiation, the average grain size increases even at cryogenic temperatures. As is the case with many ion beam processes, this phenomenon of ion irradiation induced grain growth exhibits only a very mild temperature dependence. This contribution is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction. A series of in situ ion and/or electron irradiation experiments is being performed at the HVEM-Tandem Facility at Argonne which have shown clearly for fine grained Au films that two mechanisms for growth are operative for the ion beam case: grain boundary migration as in normal thermal grain growth and grain coalescence which is similar in appearance to recrystallization by subgrain coalescence. Especially in the case of Au for which ion-induced growth is relatively rapid, such in situ experiments also demonstrate the importance of dislocation activity which is a consequence of the collision cascade damage associated with ion irradiation. Existing theories for irradiation-induced grain growth assume that growth occurs by boundary migration and that only point defects generated at grain boundaries are responsible for the growth phenomenon.


1988 ◽  
Vol 128 ◽  
Author(s):  
Joyce C. Liu ◽  
Jian Li ◽  
J. W. Mayer ◽  
Charles W. Allen ◽  
Lynn E. Rehn

ABSTRACTIn situ observations of 1.5 MeV Xe+ ion irradiated Au films at room temperature and at 150°C reveal the evolution of grain growth: the average grain size increases by the mechanisms of grain boundary migration and grain coalescence.


1995 ◽  
Vol 404 ◽  
Author(s):  
John S. Vetrano ◽  
Steve M. Bruemmer ◽  
Ian M. Robertson

AbstractRecrystallization and grain growth studies of Al-Mg-Mn-Zr alloys have been carried out in-situ in the transmission electron microscope. Nucleation sites were primarily on large (>I μm diameter) eutectic constituent particles. The sub-micron A16Mn dispersoids were observed to be effective as nuclei if present in clusters, and were effective at retarding grain boundary migration and dislocation motion. The smaller A13Zr precipitates seemed to have little effect on nucleation and growth, but were effective in pinning dislocations. These results have been analyzed in terms of precipitate size and shape in both the as-cold-worked microstructure and during recrystallization. The implications on the microstructural refinement of these alloys for improved superplastic properties will be discussed.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2640-2643
Author(s):  
Chris McRobie ◽  
Ryan Schoell ◽  
Tiffany Kaspar ◽  
Daniel Schreiber ◽  
Djamel Kaoumi

2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


1996 ◽  
Vol 436 ◽  
Author(s):  
R.-M. Keller ◽  
W. Sigle ◽  
S. P. Baker ◽  
O. Kraft ◽  
E. Arzt

AbstractIn-situ transmission electron microscopy (TEM) was performed to study grain growth and dislocation motion during temperature cycles of Cu films with and without a cap layer. In addition, the substrate curvature method was employed to determine the corresponding stresstemperature curves from room temperature up to 600°C. The results of the in-situ TEM investigations provide insight into the microstructural evolution which occurs during the stress measurements. Grain growth occurred continuously throughout the first heating cycle in both cases. The evolution of dislocation structure observed in TEM supports an explanation of the stress evolution in both capped and uncapped films in terms of dislocation effects.


2021 ◽  
Vol 545 ◽  
pp. 152688
Author(s):  
C.J. Ulmer ◽  
W-Y. Chen ◽  
D.E. Wolfe ◽  
A.T. Motta

2021 ◽  
Author(s):  
Wei-Ying Chen ◽  
Meimei Li ◽  
Richard Sisson ◽  
Peter Baldo ◽  
Zefeng Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document