Molecular Dynamics Computer Simulation of the Rupture of the two - Dimensional Lennard - Jones Film

1990 ◽  
Vol 188 ◽  
Author(s):  
John F. Maguire ◽  
Chun- Pok Leung

ABSTRACTWe have conducted a molecular dynamics computer simulation of the rupture of a small, two-dimensional film. The film was composed of two hundred atoms arranged on a close-packed triangular lattice and was thermally equilibrated at a reduced temperature of 0.05. Following equilibration, the rupture characteristics of the film were investigated under tensile loading, and the atomistic dynamical response was followed throughout the rupture process. An estimate of the internal stress field was made by performing a time average over the random forces. In tensile failure, the system undergoes an initial elastic deformation followed by plastic flow. The fundamental mechanisms of defect nucleation are briefly discussed.

2016 ◽  
Vol 195 ◽  
pp. 557-568 ◽  
Author(s):  
Pablo M. Piaggi ◽  
Omar Valsson ◽  
Michele Parrinello

We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.


2000 ◽  
Vol 634 ◽  
Author(s):  
A. Kuronen ◽  
K. Kaski ◽  
L. F. Perondi ◽  
J. Rintala

ABSTRACTMechanisms responsible for the formation of a misfit dislocation in a lattice-mismatched system have been studied using Molecular Dynamics simulations of a two-dimensional Lennard-Jones system. Results show clearly how the strain due to the lattice-mismatched interface acts as a driving force for migration of dislocations in the substrate and the overlayer and nucleation of dislocations in the overlayer edges. Moreover, we observe dislocation reactions in which the gliding planes of dislocations change such that they can migrate to the interface.


Author(s):  
Alexey A. Tsukanov ◽  
Olga Vasiljeva

AbstractThis chapter provides a brief review of computer simulation studies on the interaction of nanomaterialswith biomembranes. The interest in this area is governed by the variety of possible biomedical applications of nanoparticles and nanomaterials as well as by the importance of understanding their possible cytotoxicity. Molecular dynamics is a flexible and versatile computer simulation tool, which allows us to research the molecular level mechanisms of nanomaterials interaction with cell or bacterial membrane, predicting in silico their behavior and estimating physicochemical properties. In particular, based on the molecular dynamics simulations, a bio-action mechanism of two-dimensional aluminum hydroxide nanostructures, termed aloohene, was discovered by the research team led by Professor S. G. Psakhie, accounting for its anticancer and antimicrobial properties. Here we review three groups of nanomaterials (NMs) based on their structure: nanoparticles (globular, non-elongated), (quasi)one-dimensional NMs (nanotube, nanofiber, nanorod) and two-dimensional NMs (nanosheet, nanolayer, nanocoated substrate). Analysis of the available in silico studies, thus can enable us a better understanding of how the geometry and surface properties of NMs govern the mechanisms of their interaction with cell or bacterial membranes.


Sign in / Sign up

Export Citation Format

Share Document