Characterization and Griwth of Oicanic Multiple Qanm Well Structures

1990 ◽  
Vol 198 ◽  
Author(s):  
F.F. So ◽  
S.R. Forrest ◽  
Y.Q. Shi ◽  
W.H. Steier

ABSTRACTMultiple quantum well structures consisting of alternating layers of two crystalline organic semiconductors, namely, 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA) and 3,4,7,8 naphthalenetetracarboxylic dianhydride (NTCDA), have been grown by organic molecular beam deposition. The layer thickness was varied from 10 to 200 Å. Birefringence measurements indicate that there is a strong structural ordering in all PrCDA layers, although the PrCDA and NTCDA crystal structures are incommensurate. From optical absorption measurements, it is found there is a blue shift in the lowest energy PICDA singlet exciton line with decreasing layer thickness. A model based on exciton quantum confinement is proposed to explain the energy shift. We have measured the low temperature photoluminescence spectra of organic quantum well structures, and found a slight red shift in the spectra with decreasing well width. These results are also discussed.

2005 ◽  
Vol 891 ◽  
Author(s):  
Hans-Jeorg Lohe ◽  
Emilio Gini ◽  
Riccardo Scollo ◽  
Franck Robin ◽  
Heinz Jaeckel

ABSTRACTFor the heterogeneous integration of several layer structures for absorber, gain and passive waveguide sections in a monolithically-integrated mode locked laser diode, the bandgap of the absorber section has to be matched to the emission wavelength of the gain section. Because of the use of a multiple regrowth process for optical butt-coupling, the first grown multiple quantum-well gain material undergoes a quantum-well intermixing process, resulting in a blue shift of the emitting optical wavelength. Experimental results show, that the blue shift is dependent on the process details and cannot be investigated by simple thermal cycling of unprocessed quantum well-structures. With the introduction of an effective quantum-well width computed from the emission wavelength we found a linear relationship between the effective quantum well width shrinkage and the cumulated regrowth heating time of 8.3Å/h at a growth temperature of 630°C. Therefore knowing the cumulated regrowth time for a laser fabrication, we could successfully design the initial quantum well thickness that yields the targeted emitting wavelength and excellent matching to the absorber bandedge.


1986 ◽  
Vol 33 (6) ◽  
pp. 4389-4391 ◽  
Author(s):  
D. Hulin ◽  
A. Mysyrowicz ◽  
A. Antonetti ◽  
A. Migus ◽  
W. T. Masselink ◽  
...  

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-457-C5-461
Author(s):  
C. J. SUMMERS ◽  
K. F. BRENNAN ◽  
A. TORABI ◽  
H. M. HARRIS ◽  
J. COMAS

Sign in / Sign up

Export Citation Format

Share Document