Real Time X-Ray Studies of Interface Kinetics in Epitaxial Strained Layers

1991 ◽  
Vol 230 ◽  
Author(s):  
Roy Clarke ◽  
Waldemar Dos Passos ◽  
Walter Lowe ◽  
Brian Rodricks ◽  
Cristine Brizard

AbstractA new time-resolved x-ray method of probing the kinetics of interfacial strains in semiconductor heterostructures is presented. High-resolution synchrotron radiation measurements of the strain relaxation during rapid thermal annealing (RTA) show that the lattice strain of an as-grown strained layer structure GaAs-Inx.Ga1−x-As-GaAs/GaAs is relieved cooperatively by a series of sluggish discontinuous transitions. We find that ion implantation enhances the annealing kinetics of InAlAs strained layers.

2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


FEBS Letters ◽  
1994 ◽  
Vol 337 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Hideo Arakawa ◽  
Takuji Urisaka ◽  
Hirotsugu Tsuruta ◽  
Yoshiyuki Amemiya ◽  
Hiroshi Kihara ◽  
...  

1992 ◽  
Vol 281 ◽  
Author(s):  
T. E. Haynes ◽  
C. Lee ◽  
K. S. Jones

ABSTRACTThe rate of solid-phase epitaxial regrowth has been studied using time-resolved reflectivity in three different types of SiGe/Si epilayers amorphized by ion implantation. In two of these cases, the alloy epilayer contained either 12% or 20% Ge, and the amorphization depth was greater than the thickness (2000 Å) of the SiGe alloy layer. Time-resolved reflectivity measurements showed that the rate of regrowth was not constant in these two cases, but first decreased after passing the SiGe/Si interface, and then increased. The minimum regrowth rate occurred closer to the SiGe/Si interface in the epilayers with the larger Ge atomic fraction. In the third type of sample, the alloy epilayer thickness was ∼7μm, so that the initial epilayer (15% Ge) had the lattice constant of the bulk alloy. Furthermore, amorphization and regrowth occurred entirely within the relaxed alloy layer. In this case, the regrowth rate was constant. The composition dependence of the regrowth-rate transient in the strained layers is discussed in the context of a ‘critical-thickness’ model of strain relaxation.


2020 ◽  
Vol 22 (9) ◽  
pp. 4993-5001 ◽  
Author(s):  
Anna Rosa Ziefuss ◽  
Stefan Reich ◽  
Sven Reichenberger ◽  
Matteo Levantino ◽  
Anton Plech

The structural and energetic pathway of picosecond laser fragmentation of gold colloids has been clarified by time-resolved X-ray scattering.


2016 ◽  
Vol 88 (11) ◽  
pp. 1684-1692 ◽  
Author(s):  
Lukas C. Buelens ◽  
Vladimir V. Galvita ◽  
Hilde Poelman ◽  
Christophe Detavernier ◽  
Guy B. Marin

Biochemistry ◽  
1992 ◽  
Vol 31 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
Mark W. Tate ◽  
Erramilli Shyamsunder ◽  
Sol M. Gruner ◽  
Kevin L. D'Amico

2016 ◽  
Vol 230 (4) ◽  
Author(s):  
Wolfgang Voegeli ◽  
Etsuo Arakawa ◽  
Tadashi Matsushita ◽  
Osami Sakata ◽  
Yusuke Wakabayashi

AbstractThe interface between the N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) ionic liquid and a gold (111) surface was investigated with time-resolved X-ray reflectivity in order to clarify the dynamics of structural changes of the electric double layer after changing the electrode potential. In the experiment, the potential was switched repeatedly between +1.5 V and −1.5 V every 2 s or every 0.3 s, while measuring the specular X-ray reflectivity. When the potential was switched every 2 s, the time dependence of the reflectivity was different from that of the accumulated charge. This indicates structural relaxation processes that occur on a slower time scale than the acummulation of the charge at the electric double layer.When the potential was switched every 0.3 s, on the other hand, the reflectivity changes followed the evolution of the charge of the electric double layer within the experimental precision, indicating that slow relaxation processes without charge transfer do not contribute significantly to structural changes at this time scale.


Sign in / Sign up

Export Citation Format

Share Document