Electron Microscopy Evidence of Interfacial Steps Controlling the Kinetics of NiSi2 Formation

1993 ◽  
Vol 320 ◽  
Author(s):  
D. Hesse ◽  
P. Werner ◽  
J. Heydenreich ◽  
R. Mattheis

ABSTRACTThe kinetics and phase formation sequence of thin-film solid-state reactions, including silicide forming reactions, have frequently been considered to be controlled by interfacial kinetic reaction barriers. These are purely phenomenological quantities which describe the finite rate of the interfacial reaction in terms of limited particle fluxes crossing the respective interfaces. No atomic mechanisms that might be responsible for the action of such barriers have so far been indicated, with the exception of Schmalzried's formulation. The latter says that the interfacial barrier is due to the limited relaxation time needed by the particles to rearrange into the proper sublattice after having crossed the interface. We present correlated kinetic and structural observations during the 2Ni + Si → NiSi2 reaction on the Si(111) surface and discuss them with the help of a model involving the formation and lateral propagation of interfacial steps of different height. The model allows us to explain the kinetic observations by reaction barriers formed as a result of the crystallographic boundary conditions of the reaction.

1988 ◽  
Vol 3 (3) ◽  
pp. 461-465 ◽  
Author(s):  
H. Schröder ◽  
K. Samwer

Thin-film reactions of Co with Zr have been studied in the temperature range between 473 and 523 K by electrical conductance measurements and cross-sectional transmission electron microscopy (CS-TEM). The reduction of the electrical conductance during the solid state reaction is explained by formation and growth of an amorphous phase at every Zr/Co interface. For long reaction times the growth of the layer thickness follows a shifted $\sqrt t$ law. For short reaction times the measurements show a linear time law, which is expected for an interface limited reaction.


1985 ◽  
Vol 57 ◽  
Author(s):  
K. Samwer ◽  
H Schröder ◽  
M. Moske

AbstractMetallic glass formation by solid state reactions has been observed in multilayer Zr-Co diffusion couples. The kinetics of the reaction are limited by the diffusion of the Co-atoms in the growing amorphous layer, at least for longer times, as shown by cross-sectional transmission electron microscopy and resistance measurements. The latter one provides the interdiffusion constant and the activation energy of about 1.1 eV. Deposition of the crystalline layers at 77 K results in an enhanced amorphization process in the first stage of the reaction and gives preliminary answers about the nucleation of the amorphous phase.


Sign in / Sign up

Export Citation Format

Share Document