Lineshape Analysis of Intersubband Transitions in Multiple Quantum Wells

1995 ◽  
Vol 406 ◽  
Author(s):  
G. Gumbs

AbstractConduction intersubband transitions between the ground and first excited states in Al0.3Ga0.7As/GaAs multiple quantum wells (MQWs) are studied as a function of the twodimensional electron gas density (0.75 × 1012 ≤ σ ≤ 3.75 × 1012 cm−2) and temperature (5 ≤ T ≤ 300 K). There is no electron tunneling between the wells and well regions are uniformly doped with silicon donors. Theoretically, we have solved the Schrödinger equation containing the self-consistent Hartree potential, in which the z-dependencies of both electron effective mass and dielectric constant, as well as the non-parabolicity in the conduction energy subband dispersion have been taken into consideration. By applying many-body theory which includes the depolarization-shift from a collective dipole moment and the excitonicshift from the negative exchange interaction, we calculate the absorption spectrum as a function of the incident photon energy hw for different values of T and σ. From this, we can quantitatively analyze both T- and σ-dependencies of the peak position and the full width at half-maximum (FWHM) of peak values. The blue-shift or red-shift in the absorption peak position are quantitatively reproduced as either T or σ is reduced. The exchange interaction which depends on σ, will modify the energy subband dispersion. Therefore, the absorption peak will be broadened by the exchange interaction. The T-dependence of broadening from the optical-phonon scattering is also taken into account by a phenomenological model. From the calculated absorption spectrum as a function of o, we have successfully reproduced and explained the σ-dependence of FWHM measured in recent experiments.

2006 ◽  
Vol 955 ◽  
Author(s):  
Eric Anthony DeCuir ◽  
Emil Fred ◽  
Omar Manasreh ◽  
Jinqiao Xie ◽  
Hadis Morkoc ◽  
...  

ABSTRACTIntersubband transitions in the spectral range of 1.37-2.90 °Cm is observed in molecular beam epitaxy grown Si-doped GaN/AlN multiple quantum wells using a Fourier-transform spectroscopy technique. A blue shift in the peak position of the intersubband transition is observed as the well width is decreased. A sample with a well width in the order of 2.4 nm exhibited the presence of three bound states in the GaN well. The bound state energy levels are calculated using a transfer matrix method. An electrochemical capacitance voltage technique is used to obtain the three dimensional carrier concentrations in these samples which further enable the calculation of the Fermi energy level position. Devices fabricated from these GaN/AlN quantum wells are found to operate in the photovoltaic mode.


2007 ◽  
Vol 90 (16) ◽  
pp. 162111
Author(s):  
J. M. Li ◽  
K. Y. Qian ◽  
Q. S. Zhu ◽  
Z. G. Wang

2008 ◽  
Vol 92 (19) ◽  
pp. 191906 ◽  
Author(s):  
M. Belmoubarik ◽  
K. Ohtani ◽  
H. Ohno

Sign in / Sign up

Export Citation Format

Share Document