Light-Induced Degradation of Amorphous Silicon-Germanium Alloy Solar Cells Deposited at High Rates

1996 ◽  
Vol 420 ◽  
Author(s):  
S. Sugiyama ◽  
X. Xu ◽  
J. Yang ◽  
S. Guha

AbstractWe have studied the light-induced degradation of amorphous silicon-germanium (a-SiGe:H) alloy single-junction solar cells with high initial performance deposited at high rates. The intrinsic layers were deposited using microwave (MW) glow-discharge technique at deposition rates between 10 and 40 Å/s. The results show that light-induced degradation of the cells is higher than that of cells deposited at low rates using RF glow-discharge technique, and it does not strongly depend on deposition rates over this range. The total hydrogen content and the ratio of Si-H2, Ge-H, and Ge-H2 to Si-H bonding estimated by infrared (IR) absorption in films are correlated with the cell degradation results. We have also investigated the effect of ionbombardment on film properties. Films with low ion-bombardment are more porous and have higher composition of Si-H2 and Ge-H2 bonding. Appropriate ion-bombardment makes denser structure in a-SiGe:H alloy films deposited at high rates. This improves the cell performance as well.

2001 ◽  
Vol 664 ◽  
Author(s):  
Jeffrey Yang ◽  
Baojie Yan ◽  
Jozef Smeets ◽  
Subhendu Guha

ABSTRACTA modified very high frequency (MVHF) glow discharge technique is used to deposit amorphous silicon (a-Si) and amorphous silicon-germanium (a-SiGe) alloy solar cells at high deposition rates. High quality a-Si alloy solar cells have been obtained by using MVHF at deposition rates up to ∼10 Å/s. The cells show good initial and stabilized efficiencies comparable to those obtained from conventional radio-frequency (RF) glow discharge deposition at low rates (∼1 Å/s). However, high quality a-SiGe alloy solar cells are more difficult to achieve at high deposition rates. In this paper, we present the progress made on a-SiGe alloy solar cells by incorporating bandgap profiling and appropriate buffer layers. Using the improved a-SiGe alloy solar cells, a-Si/a-SiGe tandem configurations are made and results presented.


1986 ◽  
Vol 25 (Part 2, No. 4) ◽  
pp. L276-L278 ◽  
Author(s):  
Takeshige Ichimura ◽  
Takurou Ihara ◽  
Toshio Hama ◽  
Michio Ohsawa ◽  
Hiroshi Sakai ◽  
...  

1988 ◽  
Author(s):  
J.P. Conde ◽  
V. Chu ◽  
S. Tanaka ◽  
D.S. Shen ◽  
S. Wagner

2013 ◽  
Vol 534 ◽  
pp. 591-593 ◽  
Author(s):  
G.H. Wang ◽  
C.Y. Shi ◽  
L. Zhao ◽  
B.J. Yan ◽  
G. Wang ◽  
...  

2004 ◽  
Vol 81 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Raul Jimenez Zambrano ◽  
Francisco A. Rubinelli ◽  
Wim M. Arnoldbik ◽  
Jatindra K. Rath ◽  
Ruud E.I. Schropp

1998 ◽  
Vol 507 ◽  
Author(s):  
J. Yang ◽  
S. Sugiyama ◽  
S. Guha

ABSTRACTWe have studied amorphous silicon alloy solar cells made by using a modified-very-highfrequency glow discharge at 75 MHz with a deposition rate of ∼6 Å/s. The solar cell performance is compared with those made from conventional glow discharge at 13.56 MHz with lower deposition rates. Cells made at ∼6 Å/s with 75 MHz showed comparable stabilized efficiency to those made at ∼3 Å/s with 13.56 MHz. The best performance, however, was obtained with ∼1 Å/s, including a stabilized 9.3% a-Si alloy single-junction cell employing conventional glow discharge technique. Using 75 MHz, we have achieved 11.1% and 10.0% initial active-area efficiencies for a-Si alloy and a-SiGe alloy n i p cells, respectively. An initial efficiency of 11.0% has also been obtained in a dual bandgap double-junction structure.


Sign in / Sign up

Export Citation Format

Share Document