Theoretical Study of Hydrogen in Cubic Gan

1996 ◽  
Vol 423 ◽  
Author(s):  
Stefan K. Estreicher ◽  
Djordje M. Maric

AbstractPreliminary results of theoretical studies of hydrogen and hydrogen-related defects in cubic GaN are reported. Our calculations contrast with those of other authors in that the host crystal is represented by molecular clusters rather than periodic supercells, and that they are obtained using an all-electron methodology rather than the single effectiveparticle approach of density-functional theory. Our results confirm some predictions of other authors but conflict with others.

2021 ◽  
Vol 23 (37) ◽  
pp. 21078-21086
Author(s):  
Tomomi Shimazaki ◽  
Masanori Tachikawa

In this work, the excitation energies of asymmetric thiazolothizaole (TTz) dye molecules have been theoretically studied using dielectric-dependent density functional theory (DFT).


2020 ◽  
Vol 12 (02) ◽  
pp. 99-111
Author(s):  
Jamal A. Shlaka ◽  
◽  
Abbas H. Abo Nasria

Been studying the interactions between graphene - like aluminium nitride P(AlN)21 nano ribbons doped and defect (AlN)21Sheet, Molecules and small toxic gas molecules ( H2S), were built for two different adsorption sites on graphene like aluminium nitride P(AlN)21. this was done by employing B3LYP density functional theory (DFT) with 6-31G*(d,p) using Gaussian 09 program, Gaussian viw5.0 package of programs and Nanotube Modeller program 2018. the adsorptions of H2S on P(AlN)21, (C) atoms-doped P(AL-N)20 sheet, D-P(AL-N)20 and D-(C)atoms-doped P(AL-N)19 (on atom) with (Ead) (-0.468eV),(-0.473 eV), (-0.457 eV), (-0.4478 eV) and (-0.454 eV), respectively, (Ead) of H2S on the center ring of the P(AL-N)21, (C) atoms-doped P(AL-N)20 sheet, D-P(AL-N)20 and D-(C,B)atoms-doped P(AL-N)19 sheet are (-0.280 eV),(-0.465 eV), (-0.405 eV), (-0.468 eV) and -0.282 eV), respectively, are weak physisorption . However, the adsorptions of H2S, on the ((AlN)20 -B and D- (AlN)19 -B), (on atom N and center ring the sheet) are a strong chemisorption because of the (Ead) larger than -0.5 eV, due to the strong interaction, the ((AlN)20-B and D-(AlN)19-B), could catalyst or activate, through the results that we obtained, which are the improvement of the sheet P(AlN)21 by doping and per forming a defect in, it that can be used to design sensors. DOI: http://dx.doi.org/10.31257/2018/JKP/2020/120210


2020 ◽  
Vol 44 (5) ◽  
pp. 1254-1264
Author(s):  
Shaya AL-RAQA ◽  
İpek ÖMEROĞLU ◽  
Doğan ERBAHAR ◽  
Mahmut DURMUŞ

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.


2020 ◽  
Vol 24 (05n07) ◽  
pp. 737-749
Author(s):  
Michael Haas ◽  
Sabrina Gonglach ◽  
Wolfgang Schöfberger

We report routes towards synthesis of novel [Formula: see text]-conjugated freebase cobalt, copper, gallium and manganese meso-alkynylcorroles. UV-vis spectra show that extensive peak broadening, red shifts, and changes in the oscillator strength of absorptions increase with the extension of [Formula: see text]-conjugation. Using density functional theory (DFT), we have carried out a first theoretical study of the electronic structure of these metallocorroles. Decreased energy gaps of about 0.3–0.4 eV between the HOMO and LUMO orbitals compared to the corresponding copper, gallium and manganese meso-5,10,15 triphenylcorrole are observed. In all cases, the HOMO energies are nearly unperturbed as the [Formula: see text]-conjugation is expanded. The contraction of the HOMO–LUMO energy gaps is attributed to the lowered LUMO energies.


Sign in / Sign up

Export Citation Format

Share Document