Post-Deposition Annealing and Hydrogenation of Hot-Wire Amorphous and Microcrystalline Silicon Films

1996 ◽  
Vol 452 ◽  
Author(s):  
J. P. Conde ◽  
P. Brogueira ◽  
V. Chu

AbstractAmorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition were submitted to thermal annealing and to RF and electron-cyclotron resonance (ECR) hydrogen plasmas. Although the transport properties of the films did not change after these post-deposition treatments, the power density of a Ar+ laser required to crystallize the amorphous silicon films was significantly lowered by the exposure of the films to a hydrogen plasma. This decrease was dependent on the type of hydrogen plasma used, being the strongest for an ECR plasma with the substrate held at a negative bias, followed by an ECR hydrogen plasma with the substrate electrode grounded, and finally by an RF hydrogen plasma.

10.30544/128 ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 7-14
Author(s):  
Meysam Zarchi ◽  
Shahrokh Ahangarani

The effect of new growth techniques on the mobility and stability of amorphous silicon (a-Si:H) thin film transistors (TFTs) has been studied. It was suggested that the key parameter controlling the field-effect mobility and stability is the intrinsic stress in the a-Si:H layer. Amorphous and microcrystalline silicon films were deposited by radiofrequency plasma enhanced chemical vapor deposition (RF-PECVD) and hot-wire chemical vapor deposition (HW-CVD) at 100 ºC and 25 ºC. Structural properties of these films were measured by Raman Spectroscopy. Electronic properties were measured by dark conductivity, σd, and photoconductivity, σph. For amorphous silicon films deposited by RF-PECVD on PET, photosensitivity's of >105 were obtained at both 100 º C and 25 ºC. For amorphous silicon films deposited by HW-CVD, a photosensitivity of > 105 was obtained at 100 ºC. Microcrystalline silicon films deposited by HW-CVD at 95% hydrogen dilution show σph~ 10-4 Ω-1cm-1, while maintaining a photosensitivity of ~102 at both 100 ºC and 25 ºC. Microcrystalline silicon films with a large crystalline fraction (> 50%) can be deposited by HW-CVD all the way down to room temperature.


1993 ◽  
Vol 301 ◽  
Author(s):  
Jim L. Rogers ◽  
Walter J. Varhue ◽  
Edward Adams

ABSTRACTThin Si films doped with Er have been grown at low temperature by plasma enhanced chemical vapor deposition. The Er gas source is a sublimed organo-metallic compound fed into the process chamber. High doping concentrations without precipitation are possible because of the low deposition temperatures. The process relies on the beneficial effects of low energy ion bombardment to reduce the growth temperature. The ions as well as reactive chemical species are produced by an electron cyclotron resonance (ECR) plasma stream source. A hydrogen plasma stream is used to perform an in-situ pre-deposition clean to remove oxide from the Si surface. Film crystallinity and impurity concentration are determined by Rutherford backscattering spectrometry.


2013 ◽  
Vol 24 (11) ◽  
pp. 4574-4577
Author(s):  
Lei Zhang ◽  
Honglie Shen ◽  
Jiayi You ◽  
Xuefan Jiang ◽  
Bin Qian ◽  
...  

2014 ◽  
Vol 1016 ◽  
pp. 305-308
Author(s):  
Hua Cheng ◽  
Feng Jiang ◽  
Chang Zheng Ma ◽  
Kuo Jiang

Microcrystalline silicon films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of power on microstrcture and optical properties of microcrystalline silicon films were investigated. The results show that, with the increasing of the power, the crystallinity increased, but the concentration of hydrogen decreased monotonously. Furthermore, the absorption coefficient of the films increased monotonously, and the optical bandgap changed from 1.89eV to 1.75eV with the microwave power ranging from 400 W to 650W.


Sign in / Sign up

Export Citation Format

Share Document