New Low Temperature Phases of Tungsten Oxynitride Stabilized by Doping with Fe, Co, and Ni

1996 ◽  
Vol 453 ◽  
Author(s):  
F. Chen ◽  
J. Aitken ◽  
S. Parasher

AbstractSeveral low temperature tungsten-containing oxynitride phases were isolated and stabilized by doping with Fe, Co, and Ni. These Phases have the rocksalt structure and form around 420 °C by reacting MWO4 (M=Fe, Co, Ni) with dry ammonia. They served as intermediates in the formation of the hexagonal ternary nitrides (MWN2). X-ray powder diffraction analyses of these phases indicate that W0.62(NO) could be the parent structure type in each case. The incorporation of group VIIIB elements in the W0.62(NO) structure may play an important role in the formation and stabilization of these low temperature phases.

2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2009 ◽  
Vol 64 (10) ◽  
pp. 1107-1114 ◽  
Author(s):  
Thomas Harmening ◽  
Matthias Eul ◽  
Rainer Pöttgen

New nickel-deficient stannides Eu2Ni2−xSn5 were synthesized by induction melting of the elements in sealed tantalum tubes. The solid solution was studied by X-ray powder diffraction and two crystal structures were refined on the basis of X-ray diffractometer data: Cmcm, a = 466.03(4), b = 3843.1(8), c = 462.92(9) pm, wR2 = 0.0469, 692 F2 values, 39 variables for Eu2Ni1.49(1)Sn5 and a = 466.11(9), b = 3820.1(8), c = 462.51(9) pm, wR2 = 0.0358, 695 F2 values, 39 variables for Eu2Ni1.35(1)Sn5. This new structure type can be considered as an intergrowth structure of CaBe2Ge2- and CrB-related slabs. The striking structural motifs are nickel-centered square pyramids which are condensed via common corners and edges. The layers of condensed NiSn5 units are separated by the europium atoms. The Ni1 sites within the CaBe2Ge2 slabs show significant defects which leads to split positions for one tin site. Eu2Ni1.50Sn5 shows Curie-Weiss behavior and an experimental magnetic moment of 7.74(1) μB / Eu atom, indicating stable divalent europium, as is also evident from 151Eu Mössbauer spectra. Antiferromagnetic ordering is detected at 3.5 K.


1982 ◽  
Vol 46 (341) ◽  
pp. 453-457 ◽  
Author(s):  
R. J. Hill ◽  
J. H. Canterford ◽  
F. J. Moyle

AbstractEuhedral crystals of the low-temperature mineral lansfordite, MgCO3 · 5H2O, have been prepared from saturated magnesium bicarbonate solutions at temperatures below 10°C. The crystals are monoclinic P21/a with a = 12.4758(7), b = 7.6258(4), c = 7.3463(6)Å, β = 101.762(6)°, V = 684.24Å3, Dcalc. = 1.693 g cm−3, Dobs. = 1.70(1) g m−3. At room temperature, the crystals slowly effloresce to produce pseudomorphs of nesquehonite, MgCO3 · 3H2O. Dehydration is complete at 300°C, with decarbonation taking place in the interval to 560°C. A new X-ray powder diffraction pattern is presented, and details of the infra-red absorption spectrum are discussed.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 283-285 ◽  
Author(s):  
T. J. Bastow ◽  
D. T. Amm ◽  
S. W. Segel ◽  
R. D. Heyding

The existence of a new phase of NaOD below 160 K is reported. NQR, NMR and DTA spectra are given and preliminary X-ray powder diffraction measurements are discussed.


2020 ◽  
Vol 841 ◽  
pp. 99-102
Author(s):  
Liu Qing Liang ◽  
Yan Ying Wei ◽  
De Gui Li

Ternary compound Ti4ZrSi3 was prepared by arc melting using a non-consumable tungsten electrode under argon atmosphere, then annealed at 1023K for 30 days, the X-ray powder diffraction data of Ti4ZrSi3 was collected on a Rigaku SmartLab X-ray powder diffractometer. The powder patterns of the compound were indexed and structure refinement by using Rietveld method indicate that the Ti4ZrSi3 compound crystallizes in the hexagonal structure, space group P6/mcm (No.193) with Mn5Si3 structure type, a=b=7.5759(3) Ǻ, c=5.2162(2) Ǻ, V=259.28Ǻ3, Z=2, ρx=4.779g cm-3, the Smith–Snyder FOM F30=148.7(0.0064, 46) and the intensity ratio RIR=1.37. The Rietveld refinement results were Rp = 0.0836, Rwp= 0.1092.


2013 ◽  
Vol 69 (2) ◽  
pp. i11-i12 ◽  
Author(s):  
Yongho Kee ◽  
Hoseop Yun

The structure of Li3V2(PO4)3has been reinvestigated from single-crystal X-ray data. Although the results of the previous studies (all based on powder diffraction data) are comparable with our redetermination, all atoms were refined with anisotropic displacement parameters in the current study, and the resulting bond lengths are more accurate than those determined from powder diffraction data. The title compound adopts the Li3Fe2(PO4)3structure type. The structure is composed of VO6octahedra and PO4tetrahedra by sharing O atoms to form the three-dimensional anionic framework∞3[V2(PO4)3]3−. The positions of the Li+ions in the empty channels can vary depending on the synthetic conditions. Bond-valence-sum calculations showed structures that are similar to the results of the present study seem to be more stable compared with others. The classical charge balance of the title compound can be represented as [Li+]3[V3+]2[P5+]3[O2−]12.


2018 ◽  
Vol 33 (1) ◽  
pp. 62-65
Author(s):  
Martin Etter

Commercially available trisodium hexachlororhodate (Na3RhCl6) was dehydrated and characterized by laboratory X-ray powder diffraction. The crystal structure is isostructural to the Na3CrCl6 structure type with space group P$\bar 31$c. Unit-cell parameters are a = 6.8116(1) Å, c = 11.9196(2) Å, V = 478.95(2) Å3, and Z = 2.


1994 ◽  
Vol 9 (3) ◽  
pp. 194-199
Author(s):  
Hoong-Kun Fun ◽  
Ping Yang ◽  
Rusli Othman ◽  
Tsong-Jen Lee ◽  
Chiou-Chu Lai ◽  
...  

The crystalline structure of new TlSr2PrCu207−x was obtained at room temperature (300 K) and low temperature (100 K) from X-ray powder diffraction with CuKα radiation using Rietveld analysis. TlSr2PrCu207−x has an isotypical structure with TlBa2CaCu207 (1212). At 300 K, crystal data: Tl0.864Sr2PrCu2O6.75, Mr=727.811, the tetragonal system, P4/mmm, a =3.85404(5) Å, c = 12.1046(2) Å, V=179.80 Å3, Z=1, Dx =6.7218 g cm−3, μ =1143.922 cm−1 (λ = 1.54051 Å), F(000)=317.0, the structure was refined with 28 parameters to Rwp=5.29%, Rp = 3.65% for 3551 step intensities and Rb=7.40%, Rf=639% for 155 peaks, “goodness of fit” 5=3.05. At 100 K, crystal data: Tl0.858Sr2PrCu2O6.61, Mr=724.345, the tetragonal system, P4/mmm, a =3.84872(6) Å, c = 12.0771(3) Å, V=178.89 Å3, Z=1, Dx=6.7235 g cm−3, μ=1146.939 cm−1 (λ= 1.54051 Å), F(000) = 315.4, the structure was refined with 26 parameters to Rwp=6.70%, Rp=5.11% for 2926 step intensities and Rb=7.83%, Rf=6.70% for 131 peaks, “goodness of fit” S = 1.75.


Sign in / Sign up

Export Citation Format

Share Document